McElroy's Run Impoundment History of Construction

Allegheny Energy Supply Company, LLC

A FirstEnergy Company

Pleasants Power Station

Pleasants County, West Virginia

October 2016

Prepared for:
Allegheny Energy Supply Company, LLC
A FirstEnergy Company
800 Cabin Hill Drive
Greensburg, Pennsylvania 15601

Prepared by:
GAI Consultants, Inc.
Murrysville Office
4200 Triangle Lane
Export, Pennsylvania 15632-1358

Report Authors:

Trent I. Muraoka, P.E. Project Engineer

Arica L. DiTullio, P.E. Engineering Manager

Kent C. Cockley, P.E. Engineering Director/Senior Associate

Table of Contents

1.0	Purpose	3	1
	. ш. росч		-
2.0	Introdu	ction	Ĺ
3.0	Constru	iction Summary of Impoundment and Embankment	L
Table	1	Physical and Engineering Properties of Foundation and Abutment Materials	
Figure	e 1	USGS 7.5-Minute Mapping	
Appei	ndix A	McElroy's Run Disposal Site Drawings:	
		APSC 506-103 Detailed Plan of Compacted Ash Embankment and Initial Earth Embankment	
		APSC 506-104 Transverse and Longitudinal Sections of Embankment	
		101-6514-196 As-Built Construction Sequence	
Appei	ndix B	Stage Storage Verification Calculation	
Appei	ndix C	Design Calculations for Siphon Line	

© 2016 GAI CONSULTANTS

1.0 Purpose

This Report, the Construction History of Pleasants Power Station McElroy's Run Impoundment, covers the following criteria listed in the Code of Federal Regulations (CFR) Coal Combustion Residuals (CCR) Rule 40 CFR 257.73(c)(1), to the extent feasible:

- name and size of the watershed within which the CCR unit is located;
- location map;
- material physical and engineering properties description for foundation and abutment and CCR unit;
- site preparation and construction methods for each zone;
- detailed drawings;
- description of the existing instrumentation;
- area capacity curves;
- spillway and diversion features description, capacities, and calculations;
- construction specifications and provisions for surveillance, maintenance, and repair; and
- any record or knowledge of structural instability.

2.0 Introduction

The Pleasants Power Station (Station) is a coal-fired electric generating station located near the community of Willow Island in Pleasants County, West Virginia (WV). The Station consists of two generating units, which are capable of producing 1,300 megawatts of electricity. CCRs generated at the Station are placed in the McElroy's Run CCR Surface Impoundment (Impoundment), which is located approximately one-half-mile east-southeast of the Station. The Impoundment location is shown on the United States Geological Survey (USGS) 7.5-Minute Topographic Quadrangle Map provided as Figure 1. According to the USGS, the Impoundment is located in the Little Muskingum-Middle Island Watershed (USGS Hydrologic Unit Code 05030201) and has an area of 1,800 square miles. The WV Department of Environmental Protection identifies the watershed as the Middle Ohio North.

The purpose of the Impoundment is to receive flue gas desulfurization (FGD) scrubber by-product generated at the Station, effluent from the recirculation system from Sedimentation Ponds No. 1 and 2 of the adjacent landfill and their underdrains, and waste materials collected primarily because of general house-cleaning maintenance and/or repair at the Pleasants Power Station. The National Pollutant Discharge Elimination System (NPDES) Water Pollution Control Permit (WV 0079171) authorizes discharge to the Ohio River in accordance with effluent limitations, monitoring requirements, and other conditions set forth in the permit. The McElroy's Run Dam Certificate of Approval was signed on February 7, 1978 (ID No. 07302).

3.0 Construction Summary of Impoundment and Embankment

The Impoundment embankment construction took place from 1979 through 1992, occurring over stages. The approximate dates of construction for each successive stage are depicted on Drawing 101-6514-196. The crest of the dam is at elevation (El.) 900 feet, with El. 887 feet as the permitted final level of CCR. The Impoundment area is approximately 253 acres. A clay blanket on the upstream slope and clay-filled cutoff trench along the upstream toe were constructed to serve as a low permeability barrier. The downstream end was constructed with compacted fly ash. A landfill facility was constructed on the downstream face of the embankment, which is now grass-covered. A blanket drain, consisting of sand or bottom ash, was installed between natural soil and embankment fill downstream of the cut-off keyway.

McElroy's Dam was constructed on native soils with a clay soil cut-off keyway installed through the soft broken claystone layer to the top of bedrock, an interbedded siltstone, sandstone, and claystone formation. Foundation soils in the valley of the McElroy's Dam embankment consist of alluvial and residual soils. These soils are clayey and cohesive, and thus are not susceptible to liquefaction. However, pockets of sandy soil exist within the site soils; Investigations performed by GAI Consultants, Inc. (GAI) indicate that the soil layer over the interbedded bedrock formation is thicker towards the abutments than at the midpoint of the dam. A blanket drain, consisting of sand or bottom ash, was installed between natural soil and embankment fill downstream of the cut-off keyway.

The physical and engineering properties of the foundation, abutment, and embankment materials of which the CCR unit is constructed are listed below.

Table 1

Physical and Engineering Properties of Foundation and Abutment Materials

	Soil Unit	Long Term	Conditions
Soil Description	Weights	Effective Stre	ss Parameters
	γ moist (pcf)	Cohesion, C' (psf)	Friction, φ' (degrees)
Compacted Silty Clay	132.9	228	26.8
In-Situ Silty Clay to Clayey Silt and Rock Fragments	127.8	49	24.8
Soft Broken Claystone	135.0	1238	32
Interbedded Siltstone, Sandstone, and Claystone	-	-	-
Compacted Fly Ash	113.1	0	29.7
Bottom Ash Filter Blanket	110.0	0	35

Drawings in Appendix A show the plan view and the typical transverse and longitudinal section of the embankment, as well as the width of the embankment.

Five survey-monitoring points were installed in 1997 in the upstream slope of the embankment slightly below the crest near El. 900 feet. The monitoring points are used to measure horizontal movement and settlement of the embankment, and to determine if there is movement of the embankment over time. Piezometers are installed in the embankment to monitor the water level in the embankment.

Two perforated cross-valley foundation underdrain pipes were installed in a trench below the drainage blanket of the downstream slope of the Impoundment embankment as a part of construction. The drains were installed across the flat bottom of the valley about 100 feet upstream of the toe of the embankment. The two pipes meet near the center of the valley where they turn and extend to the current toe of the ash disposal landfill. The pipes collect any seepage that enters the drainage blanket, either through the embankment or from the subgrade below the Impoundment embankment. This water is transmitted to Sedimentation Pond No. 1.

The dam was constructed with two concrete discharge towers serving as the principal spillway. Current water levels in the Impoundment has made the use of Decant Tower 1 impractical. Decant Tower 1 was sealed such that no water enters the Tower. Decant Tower 2 is outfitted with an operational sluice gate at El. 885 feet, and a 24-inch square (former sluice gate) opening at El. 890 feet. Discharge from this structure is directed under the dam via a 36-inch-diameter concrete pipe that is approximately 3,600 feet long. Flow from the concrete pipe is conveyed to the principal spillway, with discharge directed to a channel that leads to McElroy's Run Creek. However, operational practices currently implemented at the Impoundment prevent discharge from principal spillway from occurring.

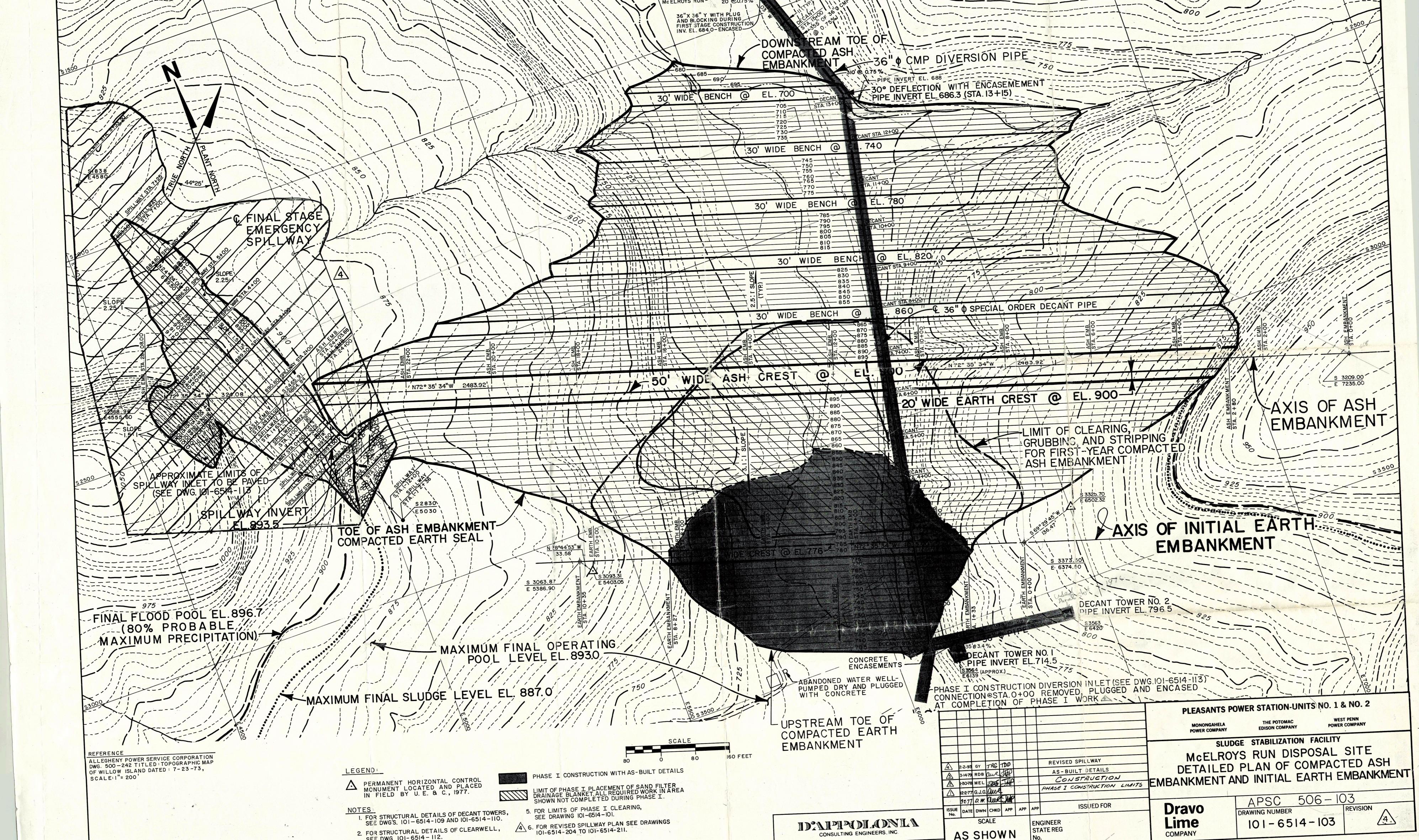
Currently, the primary discharge from the Impoundment is by use of a siphon. The siphon line is a 12-inch-diameter, high-density polyethylene pipe that can convey water to the Station for reuse, or discharge to the Ohio River. The maximum discharge of the siphon is 3,800 gallons per minute (GPM), but typically discharges at 1,800 GPM to maintain an adequate operating water elevation. The siphon flow can either be diverted to the plant for makeup water or discharged through a 14-inch pipeline to an NPDES-permitted Outfall. Design calculations for the siphon line area are attached as Attachment C. The siphon line is the primary operating mechanism for withdrawing water from the Impoundment to maintain the operational water elevation behind the dam.

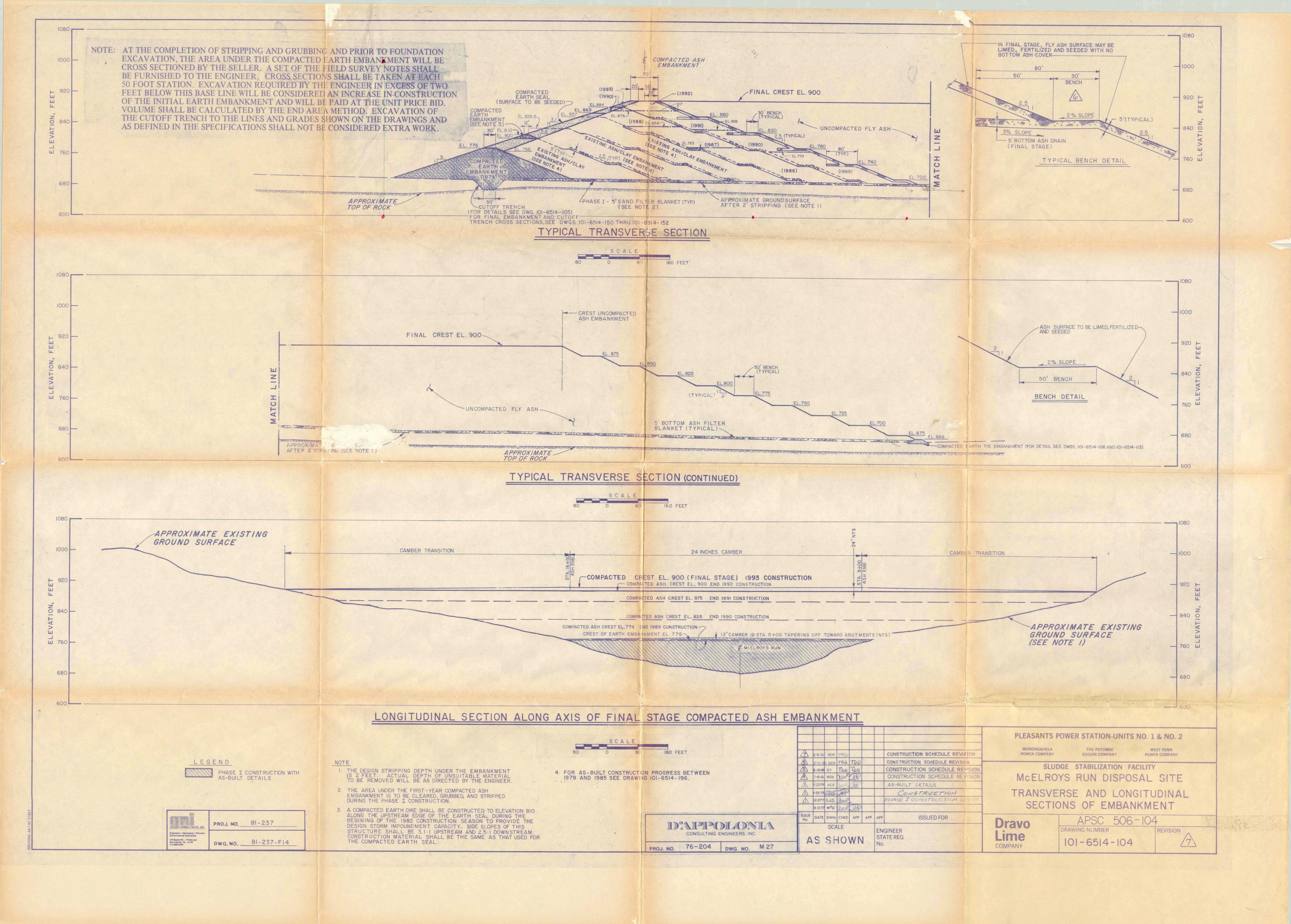
An emergency spillway located near the west abutment serves the Impoundment. The spillway is concrete-lined and has an approach lined with stone rip-rap. The spillway outlet is protected with rip-rap. The spillway bottom width ranges from 20.25 to 20.5 feet with side slopes at 3H:1V or 6H:1V and with a crest El. of 893.5 feet. The spillway has a minimum depth of 6.5 feet and can convey an approximate maximum flow rate of 9,000 cubic feet per second (cfs), which is greater than the probable maximum flood (PMF) design storm of 100 cfs through the emergency spillway. A Stage-Storage curve was developed by GAI as part of a recent Capacity Estimate of the Impoundment (Attachment B). The Stage-Storage curve of the reservoir was based on 2015 Aerial Mapping.

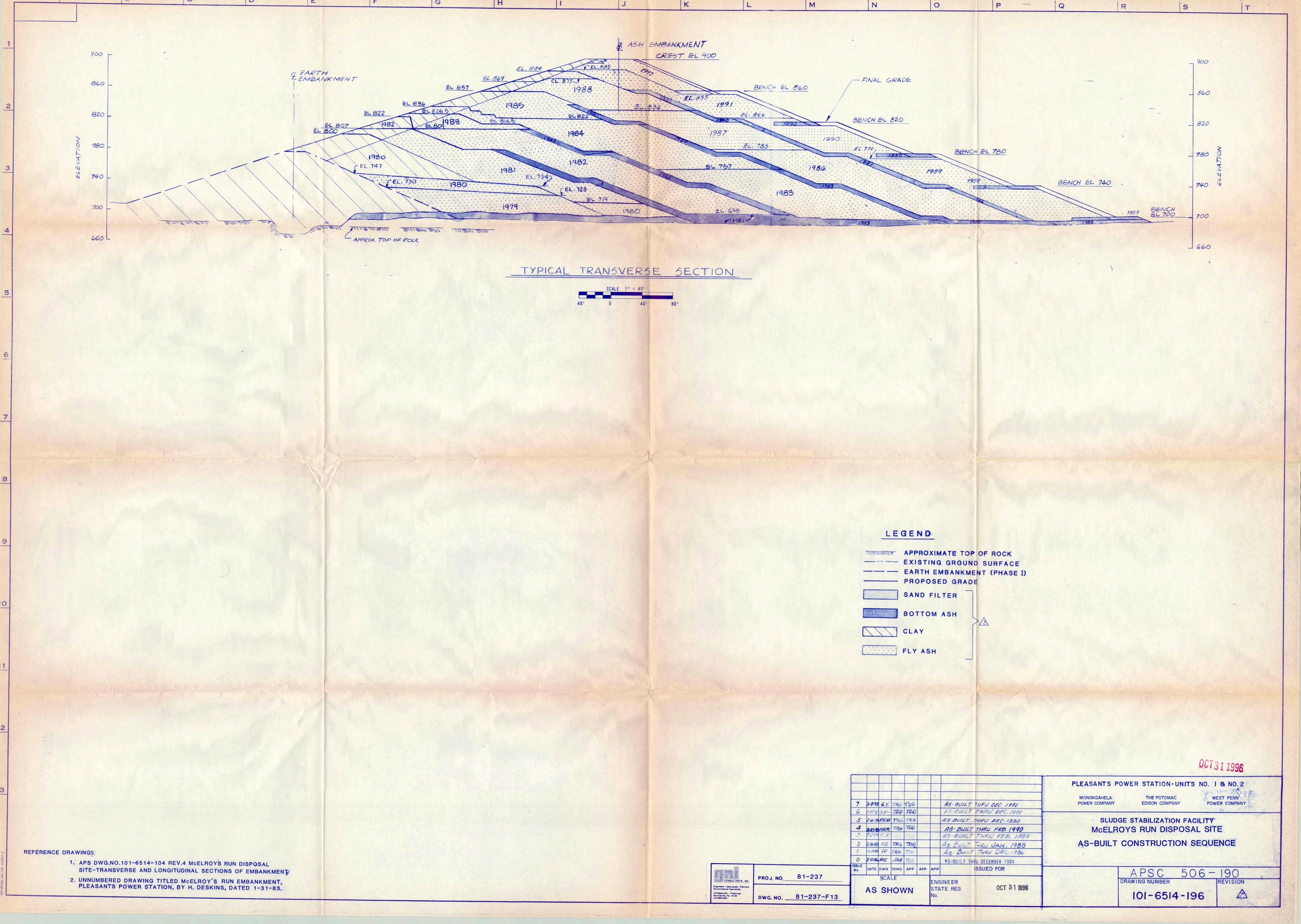
FGD scrubber by-product is pumped to the Impoundment through two eight-inch-diameter slurry lines to a valve station near the west end of the Impoundment dam. The slurry can be discharged into the Impoundment from the valve station or directed into a mobile pipeline boom, for discharge at various locations in the Impoundment.

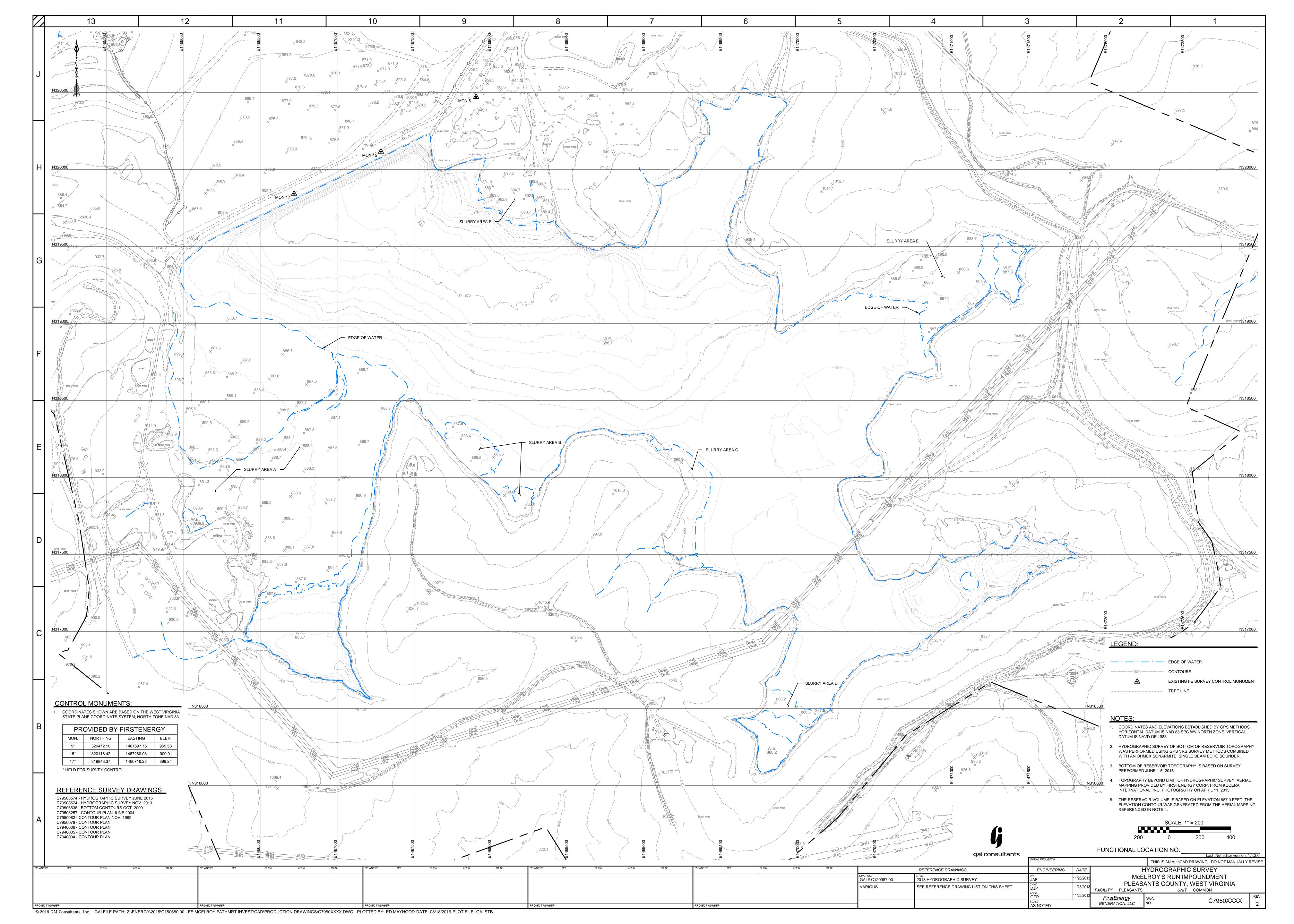
The Monitoring and Emergency Action Plan and Operations Plan, completed by FirstEnergy Corporation, revised October 2015, outlines the requirements for monitoring, inspection, and maintenance of the Impoundment.

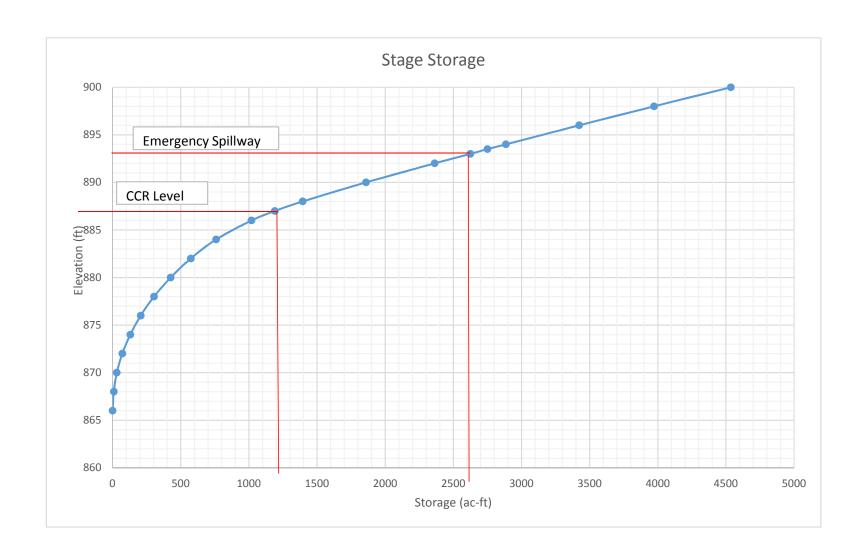
Based on the information reviewed, there have been no identified safety issues for the McElroy's Embankment in the last 10 years.


FIGURE






APPENDIX A McElroy's Run Disposal Site Drawings



APPENDIX B Stage Storage Verification Calculation

APPENDIX C Design Calculations for Siphon Line

APPENDIX B

CALCULATIONS FOR THE MINIMUM SIPHON HYDRAULIC CAPACITY

APPENDIX B

Table of Contents

Section 1	Precipitation Data and Analyses
Section 2	Evaporation Data and Analyses
Section 3	Comparative Plot of Precipitation and Evaporation Data
Section 4	Reservoir Elevation versus Storage Table
Section 5	Runoff Analyses
Section 6	Water Balance Flow Chart
Section 7	Reservoir Management Water Balance Analyses

GAI Project 1999-170-45 by KCF date checked DIRH 12-6-62

SUMMARY OF PRECIPITATION DATA Parkersburg WSO CI

TABLE 1	1 SUMMARY OF PRECIPITATION DATA - PARKERSBURG WSO	PITATION D.	ATA - PAR	KERSBUR	3 WSO									
Year														
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
1971	rainfall	2.43	3.62	1.31	1.22	3.82	3.09	5.20	4.04	4.59	1.38	2.26	1.73	34.69
	departure	-0.91	0.79	-2.22	-2.03	0.12	-1.18	1.09	0.26	1.88	-0.67	-0.10	-1.11	-4.08
	average	3.34	2.83	3.53	3.25	3.70	4.27	4.11	3.78	2.71	2.05	2.36	2.84	38.77
1972	rainfall	2.67	3.02	3.07	6.18	2.07	5.43	1.51	7.97	4.97	1.70	3.93	4.85	47.37
	departure	-0.67	0.19	-0.46	2.93	-1.63	1.16	-2.60	4.19	2.26	-0.35	1.57	2.01	8.60
	average	3.34	2.83	3.53	3.25	3.70	4.27	4.11	3.78	2.71	2.05	2.36	2.84	38.77
1973	rainfall	2.22	1.91	2.68	5.71	3.35	2.02	6.53	2.10	3.32	3.73	3.46	1.86	38.89
	departure	-1.12	-0.92	-0.85	2.46	-0.35	-2.25	2.42	-1.68	0.61	1.68	1.10	-0.98	0.12
	average	3.34	2.83	3.53	3.25	3.70	4.27	4.11	3.78	2.71	2.05	2.36	2.84	38.77
1974	rainfall	4.77	1.62	2.88	2.48	6.12	5.18	2.45	5.89	3.20	1.09	2.46	3.26	41.40
	departure	1.69	-1.15	-0.87	-0.97	2.56	1.17	-1.83	2.55	0.40	-1.02	-0.06	0.49	
	average	3.08	2.77	3.75	3,45	3.56	4.01	4.28	3.34	2.80	2.11	2.52	2.77	
1975	rainfall	2.77	3.77	4.63	4.39	5.01	2.33	2.35	4.42	5.42	4.12	2.59	3.71	45.51
	departure	-0.31	1.00	0.88	0.94	1.45	-1.68	-1.93	1.08	2.62	2.01	0.07	0.94	7.07
	average	3.08	2.77	3.75	3.45	3.56	4.01	4.28	3.34	2.80	2.11	2.52	2.77	38.44
1976	rainfall	2.54	2.17	2.81	96.0	2.77	4.52	6.50	1.94	2.81	5.02	0.34	1.39	33.77
	departure	-0.54	-0.60	-0.94	-2.49	-0.79	0.51	2.22	-1.40	0.01	2.91	-2.18	-1.38	-4.67
	average	3.08	2.77	3.75	3.45	3.56	4.01	4.28	3.34	2.80	2.11	2.52	2.77	38.44
1977	rainfall													
	departure	0	o o	0	o o	o o	0	0	0	0		0	4	
0107	average	0.00	0.00	0.00	0.00	00:00	0.00	0.00	0.00	0.00	00:00	0.00	0.00	0.00
1978	rainfall													
	departure	0	c c		c c	Ċ	6	6	ć	9	Ċ	ć	ć	0
1070	Depositor Industrial		0.0	8	89.9	8.5	0.00	0.0	0.00	0.00	8.0	0.00	0.00	0.00
0	departure													
	average	0.00	00.0	00.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1980	rainfall													
	departure	0	0	0	0	0	(i c	0	((((
1007	average	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
- 081														
	average	0.00	0.00	000	0 0	000	00 0	000	000	00 0	000	000	000	000
1982	rainfall													
	departure													
	average	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	00.00

SUMMARY OF PRECIPITATION DATA Parkersburg WSO CI

1983	rainfall													
	departure													
	average	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	00.0	00.0	0.00	0.00	0.00
1984	rainfall													
	departure													
	average	0.00	0.00	0.00	0.00	0.00	0.00	00.00	00.00	0.00	00.0	0.00	0.00	00.0
1985	rainfall	2.04	2.75	5.29	1.6	5.2	1.65	6.28	3.57	0.59	3.91	7.39	1.26	41.53
	departure		0.17	1.73	-1.77	1.71	-2.19	2.20	-0.01	-2.23	1.47	4.96	-1.46	
	average	2.04	2.58	3.56	3.37	3.49	3.84	4.08	3.58	2.82	2.44	2.43	2.72	41.53
1986	rainfall													
	departure													
	average	0.00	0.00	0.00	0.00	0.00	0.00	00.0	00.0	0.00	0.00	0.00	0.00	00.0
1987	rainfall	1.71	0.73	2.03	3.02	1.71	2.01	2.65	2.65	2.03	1.75	2.03	3.20	25.52
	departure	-1.15	-1.85	-1.53		-1.78	-1.83	-1.43	-0.93	-0.79	69.0-	-0.40	0.48	
	average	2.86	2.58	3.56	3.02	3.49	3.84	4.08	3.58	2.82	2.44	2.43	2.72	25.52
1988	rainfall	1.48	2.86	3.17	2.52	1.57	0.64	4.24	1.19	3.59	1.76	4.43	3.68	31.13
	departure		0.28	-0.39	-0.85	-1.92	-3.20	0.16	-2.39	0.77	-0.68	2.00	96.0	
	average	1.48	2.58	3.56	3.37	3.49	3.84	4.08	3.58	2.82	2.44	2.43	2.72	31.13
1989	rainfall	3.61	7.26	5.97	5.82	4.56	4.22	2.58	8.06	6.94	3.01	1.30	1.19	54.52
	departure	0.75		2.41	2.45	1.07	0.38	-1.50	4.48	4.12		-1.13		
	average	2.86	7.26	3.56	3.37	3.49	3.84	4.08	3.58	2.82	3.01	2.43	1.19	54.52
1990	rainfall	2.90	3.09	2.57	2.19	8.49	5.23	7.77	5.65	2.15	4.95	2.36	8.21	55.56
	departure	0.04	0.51	-0.99	-1.18	5.00	1.39	3.69	2.07	-0.67	2.51	-0.07	5.49	
	average	2.86	2.58	3.56	3.37	3.49	3.84	4.08	3.58	2.82	2.44	2.43	2.72	55.56
1991	rainfall	3.08	3.58	4.74	4.37	1.75	3.85	7.85	4.74	3.55	1.22	3.82	5.47	48.02
	departure	0.22	1.00	1.18	1.00	-1.74	0.01	3.77	1.16	0.73	-1.22	1.39	2.75	
	average	2.86	2.58	3.56	3.37	3.49	3.84	4.08	3.58	2.82	2.44	2.43	2.72	48.02
1992	rainfall	2.30	1.50	4.30	2.27	3.75	3.10	8.46	3.75	2.34	0.63	3.52	1.81	37.73
	departure	-0.56	-1.08	0.74	-1.10	0.26	-0.74	4.38	0.17	-0.48	-1.81			
	average	2.86	2.58	3.56	3.37	3.49	3.84	4.08	3.58	2.82	2.44	3.52	1.81	37.73
1993	rainfall	2.50	1.78	4.49	2.90	2.22	3.16	3.75	3.10	3.58	3.23	3.61	1.73	36.05
	departure	0.19	-0.70		-0.42	-1.53	-0.27	-0.46	-0.62	0.51	0.55	0.69	-1.19	
	average	2.31	2.48	4.49	3.32	3.75	3.43	4.21	3.72	3.07	2.68	2.92	2.92	36.05

checked DRH 12-6-02 GAI Project 1999-170-45 by んくし date

McElroy's Run Disposal Facility Allegheny Energy Pleasants Power Station

SUMMARY OF PRECIPITATION DATA Parkersburg WSO CI

1994	rainfall	5.11	3.51	5.98	5.54	3.71	3.15	7.79	4.60	3.38	99.0	2.40	2.75	48.58
	departure	0.00	1.03	2.43	2.22	-0.04	-0.28	3.58	0.88	0.31	-2.02	-0.52	-0.17	0.00
	average	5.11	2.48	3.55	3.32	3.75	3.43	4.21	3.72	3.07	2.68	2.92	2.92	48.58
1995	rainfall	4.38	2.29	1.57	2.21	8.99	4.84	1.06	4.71	2.42	4.60	2.69	2.50	42.26
	departure	0.00	-0.19	-1.98	-1.1	5.24	1.41	-3.15	0.99	-0.65	1.92	-0.23	0.00	0.00
	average	4.38	2.48	3.55	3.32	3.75	3.43	4.21	3.72	3.07	2.68	2.92	2.50	42.26
1996	rainfall	5.04	3.34	4.30	3.26	9.06	4.68	7.43	2.53	5.79	1.49	3.26	3.29	53.47
	departure	2.73	98.0	0.75	-0.06	5.31	1.25	3.22	-1.19	2.72	-1.19	0.34	0.37	15.11
	average	2.31	2.48	3.55	3.32	3.75	3.43	4.21	3.72	3.07	2.68	2.92	2.92	38.36
1997	rainfall	2.23	1.48	9.42	2.16	3.80	6.82	5.29	5.70	1.84	1.19	1.91	2.10	43.94
	departure	-0.08	-1.00	5.87	-1.16	0.05	3.39	1.08	1.98	-1.23	-1.49	-1.01	0.00	0.00
	average	2.31	2.48	3.55	3.32	3.75	3.43	4.21	3.72	3.07	2.68	2.92	2.10	43.94
1998	rainfall	3.63	4.71	3.55	4.91	3.85	13.20	2.56	0.67	2.31	2.02	1.65	2.23	45.29
	departure	1.32	2.23	0.00	1.59	0.10	9.77	-1.65	-3.05	-0.76	-0.66	-1.27	-0.69	6.93
	average	2.31	2.48	3.55	3.32	3.75	3.43	4.21	3.72	3.07	2.68	2.92	2.92	38.36
1999	rainfall	5.79	2.67	3.23	2.79	3.08	1.77	1.86	4.13	1.12	3.36	4.40	3.37	37.57
	departure	3.48	0.19	-0.32	-0.53	-0.67	-1.66	-2.35	0.41	-1.95	0.68	1.48	0.45	-0.79
	average	2.31	2.48	3.55	3.32	3.75	3.43	4.21	3.72	3.07	2.68	2.92	2.92	38.36

Statistical analyses can be performed based on the Average Annual Precipitation, or on the individual Average Monthly Precipitation values.
Analysis based on the Average Annual Precipitation have a more direct correlation to exceedance probability, which is typically based on an annual basis.
Analysis based on the individual Average Monthly Precipitation values provide some insight in the variability of precipitation that may occur.

STATISTICAL ASSESSMENT, MONTHLY BASIS

=

Allegheny Energy Pleasants Power Station McElroy's Run Disposal Facility

A Statistical Analysis is performed on the monthly precipitation for comparative purposes only.

The standard deviation is computed for the Monthly Precipitation values, and monthly precipitation values equal to the Average Monthly Ppt plus a multiple

of the standard deviation are computed. The results will be compared to results on statistical analyses performed on annual precipitation.

TABLE 2 SUMMARY OF MONTHLY PRECIPITATION	ILY PRECIF		COMPARATIVE ANALYSES	IVE ANAL	YSES								
Month	Jan		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Average Monthly Values	2.31	2.48	3.55	3.32	3.75	3.43	4.21	3.72	3.07	2.68	2:92	2:92	38.36
Standard Deviation of Monthly Values	1.21	1.38	1.81	1.58	2.27	2.59	2.41	1.93	1.56	1.43	1.44	1.65	
Average Monthly Precipitation + One Standard Deviation	3.52	3.86	5.36	4.90	6.02	6.02	6.62	5.65	4.63	4.11	4.36	4.57	59.63
Maximum Monthly Values	5.79	7.26	9.42	6.18	90.6	13.20	8.46	8.06	6.94	5.02	7.39	8.21	94.99
The Maximum Annual Rainfall Recorded is	orded is												55.56

Allegheny Energy Pleasants Power Station McElroy's Run Disposal Facility STATISTICAL ASSESSMENT, ANNUAL BASIS

≡

Data	Counter	4	4	-	1	-	-	-	τ-	-	1	1	-	-	-	-	τ-	-		_	-	-	-	←	_		-	-	-			29	Parkersburg WSO CI
Precipitation	(inches)	34.69	47.37	38.89	41.4	45.51	33.77	B&V N 36.03	study 43.82	data \ 43.92	42.34	35.65	38.14	\ 50.57	36.16	41.53	43.15	25.52	31.13	54.52	55.56	48.02	37.73	36.05	48.58	42.26	53.47	43.94	45.29	37.57	s 1212.58	ata	tation 41.81 inches
Year		1971	1972	1973	1974	1975	1976	1977 E	1978	1979	1980	1981	1982	1983	1984	1985	1986	1987	1988	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	total precipitation, inches	number of years with data	Average Annual Precipitation

Additional data is available for the Wood County Airport, as taken directly from "Scrubber Solids Pond Hydrologic Study Report", by Black & Veatch, Project 26287, February 1995. (noted in above table) 41.06 inches Wood County Airport Average Annual Precipitation

checked DRH 12-6-02 GAI Project 1999-170-45 by KLC date

Power Station Run Disposal Facility		Rainfall
tion =	Use Average Annual Precipitation = 41.81 inches	
	48.54	
	6.97 6.97	computed as square root of variance spreadsheet built-in formula

Sum of Average Monthly Ppt values	38.36	inches	38.36 inches Note the relatively large difference
Average Annual Precipitation	41.81	41.81 inches	between these two values
			1 . 13
Average Annual Precipitation	41.81	41.81 inches	
Standard Deviation of Annual Precipitation	6.97	inches	
Average Annual Ppt + 1 Standard Deviation	48.78	inches	
Average Annual Ppt + 1-1/2 Standard Deviation	52.26	inches	

inches inches inches

48.78 52.26 55.75

Exceedance Probability Analysis

Average Annual Ppt + 2 Standard Deviation

Precipitation can be approximated as a Normal Distribution ASSUME

Normal Function [(x - mean) / (standard deviation)] Set Nz(Z) =

The probability that the precipitation in a given year will be equalled or exceeded is expressed as 1 - Nz(Z)

41.8131 inches

Average Annual Precipitation

Given

inches	Probability of Exceedance
6.97	1 - Nz(Z)
	Nz(Z)
eviation	Z
Standard Deviation	×
	multiple of std dev
	parameter "x"

Probability	of Exceedance	20%	16%	10%	7%	2%
1 - Nz(Z)		0.5	0.1587	0.1003	0.0668	0.0227
Nz(Z)		0.5	0.8413	0.8997	0.9332	0.9773
Z		0.00	1.00	1.25	1.50	2.00
×		41.81	48.78	50.52	52.26	55.75
multiple	of std dev	0	-	1.25	1.5	2
parameter "x"		mean	mean + std dev	mean + 1.25 std dev	mean + 1.5 std dev	mean + 2 std dev

obtain value from "Standard Normal Distribution Function" table, in Introduction to Probability Theory and Statistical Inference, H.J.Larson, (2nd ed), . Wiley & Sons, 1974

Pleasants Power Station McElroy's Run Disposal Facility Allegheny Energy

52.26 55.75 38.36 41.81 48.78 Year 7.61% Dec 3.18 3.98 2.92 4.24 3.71 7.61% 3.18 3.98 Nov 4.24 2.92 3.71 6.99% 3.65 3.89 2.68 2.92 3.41 ö 8.00% 3.35 Sep 3.90 4.18 4.46 3.07 9.70% 3.72 4.05 4.73 Aug 5.41 5.07 10.97% 6.12 4.59 5.35 5.74 4.21 ₹ 8.94% 3.43 4.98 Jun 4.36 4.67 9.78% 5.45 May 3.75 4.09 5.11 4.77 8.65% 4.52 4.82 Apr 3.32 3.62 4.22 9.25% 5.16 Mar 3.55 4.84 4.51 3.87 6.47% 3.15 2.48 3.38 3.60 Feb TABLE 3 ANNUAL PRECIPITATION ANALYSES 6.02% 3.15 3.36 Jan 2.31 2.52 2.94 Percentage of Average Monthly Average Annual Ppt plus 2 Standard Deviation Average Annual Ppt plus Average Annual Ppt plus 1 Standard Deviation Monthly Ppt Distribution of 1-1/2 Standard Deviation Monthly Ppt Distribution of Monthly Ppt Distribution of Monthly Ppt Distribution of Ppt to Sum of Average Average Monthly Values Average Annual Ppt Monthly Values Month

COMPARISON OF MONTHLY AVERAGE RAINFALL AMOUNTS, 1971 & 1999 CALENDAR YEARS, RAINFALL IN INCHES ≥

38.77	38.36	-0.41
2.84	2.92	0.08
2.36	2.92	0.56
2.05	2.68	0.63
2.71	3.07	0.36
3.78	3.72	-0.06
4.11	4.21	0.10
4.27	3.43	-0.84
3.70	3.75	0.05
3.25	3.32	0.07
3.53	3.55	0.02
2.83	2.48	-0.35
3.34	2.31	-1.03
average	average	
1971	1999	

DEVELOPMENT OF "WET YEAR" MONTHLY PRECIPITATION DISTRIBUTION >

				59.63 inches /iation)
inches	inches	inches	inches	ion is andard dev
55.56	41.81	38.36	48.78 ce 1971.	dard Deviati plus one st
The Maximum Annual Precipitation recorded (calendar basis) is	The Average Annual Precipitation is	Sum of Average Monthly Precipitation values	The Average Annual Precipitation plus One Standard Deviation is 48.7 This precipitation has been exceeded 4 times since 1971.	The Annual Precipitation for Average Monthly Ppt plus Monthly Standard Deviation is (year where the monthly ppt is equal to the average monthly value plus one standard deviation)

A "Wet Year" will be considered to be a Year in which the precipitation in any month is equal to the Average Monthly Precipitation plus This yields a probability of exceedance of about 16%

Standard Deviation.

~

ş 3.18 3.98 2.92 4.24 3.71 3.65 3.89 ö 2.68 2.92 3.41 3.35 4.18 4.46 Sep 3.90 3.07 Aug 3.72 4.05 4.73 5.41 5.07 4.21 4.59 5.35 5.74 6.12 크 hun 3.43 3.74 4.36 4.98 4.67 5.45 May 3.75 4.09 5.11 4.77 3.62 4.52 Apr 3.32 4.22 4.82 Mar 3.55 5.16 4.84 3.87 4.51 TABLE 3 SUMMARY OF PRECIPITATION ANALYSES Feb 2.48 3.15 3.38 3.60 Jan 3.15 3.36 2.31 2.52 2.94 Wet Year Ppt, 1.5 Std Dev, based on Monthly Average Annual Ppt Wet Year Ppt, 1 Std Dev, based on Monthly Average Annual Ppt on Monthly Average Annual Ppt Wet Year Ppt, 2 Std Dev, based Monthly Average Annual Ppt Average Monthly Ppt Month

52.26

3.98

48.78

3.71

38.36

2.92

Year

Dec

41.81

55.75

4.24

Evaporation

I. Available Evaporation Data

1.69 ö 2.47 Sep 3.85 Aug 4.90 Ę 4.44 Jun 3.90 May 3.11 Арг 1948 (8) to 1964 (9) Mar Feb Jan I.A. Clarksburg Average Value Month

I.B. Evaporation Maps, Weather Atlas of the United States, U.S. Department of Commerce, Environmental Data Service, June 1968.

24.36

total

ည် တ

% No

I.B.1. Mean Annual Class A Pan Evaporation - Plate 1

40 McElroy's Run site Clarksburg area

I.B.2. Mean Annual Lake Evaporation - Plate 2

inches inches 34 39 McElroy's Run site Clarksburg area

I.B.3. Mean Annual Class A Pan Coefficient - Plate 3

percent percent McElroy's Run site Clarksburg area

I.B.4. Calculated Class A Pan Coefficient, from Class A Pan & Lake Evaporation

percent percent 75 McElroy's Run site Clarksburg area

I.B.5. Mean May-October Evaporation in Percent of Annual Evaporation - Plate 4

72 74 Clarksburg area

percent McElroy's Run site

Evaporation

II. Analyses and Correlations

Pan evaporation is usually not measured from late fall to late spring in the northern climes, due to freezing of the water.

However, some evaporation does occur during this period.

Given the above information from the Weather Atlas, one can adjust the Clarksburg data to fill in the remaining portion of the year, and then adjust again to correlate it to the McElroy's Run site.

II.A. Adjust Clarksburg data to get full year info

At Clarksburg area

30 inches 21.25 inches The mean annual lake evaporation

(Weather Atlas, Plate 2)

(Clarksburg data)

The May - October evaporation from the Clarksburg data is

The Clarksburg data (Section I.A. above) is believed to be "lake" evaporation

The proportion of the Clarksburg May - October evaporation to the

Mean Annual Evaporation is then

71 percent 72 percent The Weather Atlas indicates that the proportion should be

percent in the water balance analyses.

72

Use

(Weather Atlas. Plate 1 & 2)

(calculation)

percent of the Mean Annual (Pan or Lake) Evaporation occurs in the 6 month period May to October. 72 Given that

percent of the Mean Annual (Pan or Lake) Evaporation would occur in the remaining 6 month period November to April. The remaining

For Lake Evaporation, the corresponding evaporation values would be

(Weather Atlas, Plate 2) (Clarksburg data) (calculation) 30 inches 21.25 inches 8.75 inches Mean Annual Lake Evaporation November to April May to October

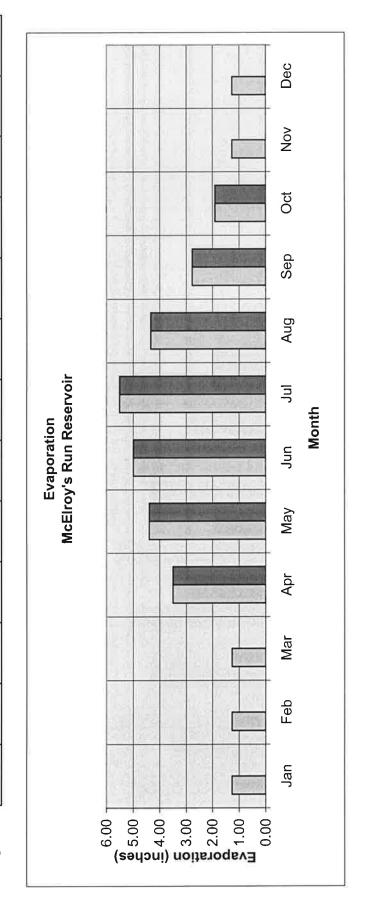
3.11 inches The Clarksburg data indicates that the monthly average for April is

(Clarksburg data) (calculation) 5.64 inches (cal 1.13 inches/month Therefore, Lake Evaporation from November to March would be Divide this amount evenly between the 5 months

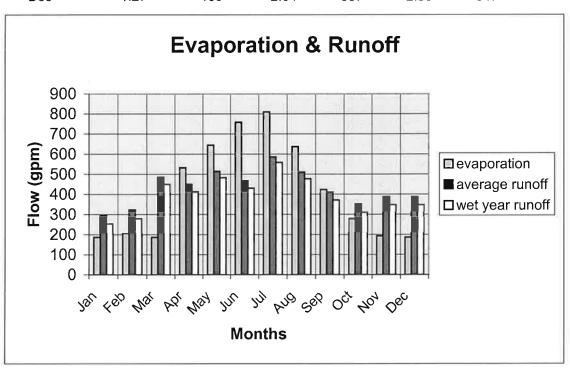
(calculation)

The resulting monthly distribution of lake evaporation for the Clarksburg area is therefore

Clarksbur	garea											
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	total
1.13	1.13	1.13	3.11	3.90	4.44	4.90	3.85	2.47	1.69	1.13	1.13	30.00


Evaporation

I.C. The Weather Atlas indicates that the ratio of evaporation at the McElroy's Run site to evaporation at the Clarksburg area is on the order of


(Weather Atlas, Plate 2)	1.13
lake evaporation	Ratio of McElrov's Evaporation to Clarksburg Evaporation =
	(Weat

The Average Monthly distribution of lake evaporation at the McElroy's Run site is estimated as the Clarksburg monthly values multiplied by the above ratio. The Below-Average Monthly distribution of lake evaporation assumes negligible evaporation occurs between November through March.

	McElroy's	Run Site			5								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	total
Average	1.27	1.27	1.27	3.50	4.39	5.00	5.51	4.33	2.78	1.90	1.27	1.27	33.75
Below-Average	0	0	0	3.50	4.39	5.00	5.51	4.33	2.78	1.90	0.00	0.00	27.41

	Evaporation (inches)	Evaporation (gpm)	Average Runoff (inches)	Average Runoff (gpm)	Wet Year Runoff (inches)	Wet Year Runoff (inches)
Jan	1.27	186	2.01	296	1.73	254
Feb	1.27	206	2.19	321	1.90	279
Mar	1.27	186	3.29	483	3.05	449
Apr	3.50	531	3.05	448	2.80	411
May	4.39	644	3.50	514	3.28	481
Jun	5.00	758	3.16	465	2.92	429
Jul	5.51	810	3.98	585	3.80	558
Aug	4.33	636	3.47	509	3.24	477
Sep	2.78	422	2.79	410	2.53	371
Oct	1.90	279	2.39	351	2.11	310
Nov	1.27	193	2.64	387	2.36	347
Dec	1.27	186	2.64	387	2.36	347

Elevation - Area Measurements obtained using CADD of digitized 2000 Topo of the McElroy's Run Reservoir Area. Volume is computed using the Average End Area Method. Computed Volumes were checked against the Elevation-Storage Curve originally developed for the Reservoir by D'Appolonia, Inc., and good agreement (+/- 1-2 percent) was obtained. Therefore, these values are used in subsequent reservoir analyses in this spreadsheet.

Reservoir Water Level at Time of Aerial Mapping	876.10	ft, msl
Reported Reservoir Water Level (March 2001)	880.5	ft, msl
Reported Reservoir Water Level (November 2001)	881.4	ft, msl
Current Reservoir Water Level (December 2001)	880.9	ft, msl

ГΔ	RΙ	F	-1

·		•			
Reservoir Elevation (ft, msl)	Surface Area (ac)	Average Surface Area (sf)	Increm. Storage Volume (ac-ft)	Total Storage Volume (ac-ft)	Reservoir Elevation (ft,msl)
876.10	160	167	151	14500	Ref. 2, Drawing 6056-F-211434
877.00	175	182	182	14651	877.00
878.00	190	196	196	14833	878.00
879.00	202	208	208	15029	879.00
880.00	214	216	216	15237	880.00
881.00	218	220	220	15454	881.00
882.00	223	224	224	15674	882.00
883.00	226	228	228	15898	883.00
884.00	230	232	232	16127	884.00
885.00	234	236	236	16359	885.00
886.00	238	240	240	16595	886.00
887.00	241	243	243	16835	887.00
888.00	245	248	248	17078	888.00
889.00	250	253	253	17326	889.00
890.00	255	256	256	17578	890.00
891.00	258	259	259	17835	891.00
892.00	260	262	262	18094	892.00
893.00	263	264	264	18355	893.00
894.00	266	267	267	18620	894.00
895.00	268	270	270	18887	895.00
896.00	271	272	272	19157	896.00
897.00	274	275	275	19429	897.00
898.00	276	278	278	19704	898.00
899.00	279	280	280	19982	899.00
900.00	282	200	200	20263	900.00

1. First Order Approximation of Monthly Runoff Volume

The SCS Soil Cover Complex Method is adopted to estimate monthly average runoff volumes to the resrevoir.

This method is also used in the HELP model for the prediction of runoff. The method uses an initial abstraction parameter, which accounts for some minimum level losses (infiltration & interception) before the start of runoff. For water balance methods using monthly rainfall, predicted runoff volumes using the SCS method are considered to be slightly conservative, because the computed initial abstraction is taken from the entire monthly rainfall, rather than only for those rainfall events which exceed the initial abstraction.

The scope of the analyses does not permit evaluation of long-term records of daily temperature, relative humidity, and precipitation values. During the winter months, the volume of runoff may differ somewhat from the predicted values. The effective curve number as snowfall, whose fate depends upon temperature and relative humidity levels in addition to ground moisture conditions. may be increased because of the probability of frozen ground, which reduces infiltration. Precipitation may also occur

Also, the availability of this information, both in quantity and in proximity to the McElroy's site, is limited. Therefore, monthly values of precipitation and evaporation are used, as this data would provide reasonable prediction of reservoir levels.

887 ft, msl

Reservoir Normal Operating Target Level

Data

_ੂ ₹

(Elevation 887 ft, msl) Solid Waste/NPDES Application (81-237-67, March 1997), Addendum II, Section 4, p. 6 of 17, 81-237-41 Solid Waste/NPDES Application (81-237-67, March 1997), Addendum II, Section 4, p. 6 of 17, 81-237-41 estimated, by trial & error to get composite CN estimated, by trial & error to get composite CN estimated, by trial & error to get composite CN		 (see calcs by TRV, "Emergency Spillway, 2-13-92, in letter, GAI to APSC (H.McCullough), Project 81-237-41, April 14, 1992; and Solid Waste/NPDES Application (81-237-67, March 1997), Addendum II, Section 4, p. 6 of 17, 81-237-41 85 rounded 100 rounded 76 rounded 77 rounded 77 rounded 77 rounded 78 rounded 79 rou
(Elevation 887 Solid Waste/NPDES Al Solid Waste/NPDES Al estimated, by trial & err estimated, by trial & err estimated, by trial & err		Spillway, 2-13-92, in lette n (81-237-67, March 199 85 rounded 100 rounded 76 rounded 77 rounded 74 rounded
241.5 acres 386.5 acres 386.5 acres 386.5 acres dition 289.9 acres oir 628.0 acres 204.0 acres 30.4 acres 114.0 acres 55.6 acres 4.0 acres 832.0 acres	100 67 79 86 74 68	(see calcs by TRV, "Emergency Solid Waste/NPDES Application
Areas Reservoir Upland Areas upland area, woods, fair condition upland area, pasture, fair condition subtotal, area upland of reservoir Ash Disposal Area active disposal revegetated pile off-site areas pond total	Curve Numbers reservoir upland areas fair woods, HSG "B/C" fair pasture, HSG "C" ash disposal area active disposal revegetated pile off-site areas pond	Composite Curve Numbers reservoir plus upland area reservoir alone upland areas alone ash disposal area
I.B.11	H.B.2.	II.B.3.

Allegheny Energy Pleasants Power Station McElroy's Run Disposal Site

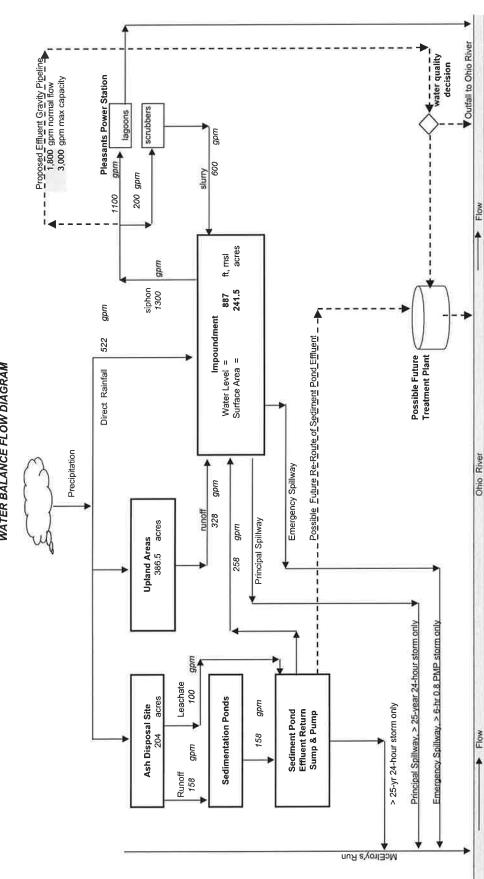
S Factor

II.B.4.

Runoff

	0.00 using unrounded CN values		3.51 using unrounded CN values		0.35 inch	0 inch	0.63 inch	0.70 inch
reservoir plus upland area	reservoir alone	upland areas alone	ash disposal area	II.B.5. Minimum Rainfall Resulting in Runoff	reservoir plus upland area	reservoir alone	upland areas alone	ash disposal area

Table 1 Summary of Monthly Average Runoff Volumes Areas Draining to the Reservoir Precipitation Records 1971-1999


	Average Year Monthly Precipitation	Average	Anthly Pre	cinitation V	stribe serile	ted to obtain	Average A	Vnnual Preci	nitation						
	Jan Feb Mar Apr May Jun Jul		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	ö	Nov	Dec	Year
	average annual monthly rainfall		2.52	2.70	3.87	3.62	4.09	3,74	4,59	4,05	3,35	2,92	3,18	3.18	41.81
	predicted runoff, composite, CN=	85	1.21	1.36	2.36	2:14	2.56	2:25	3.01	2.53	1.90	1.54	1.76	1.76	24.37
	predicted runoff, reservoir CN=	100	2.52	2,70	3.87	3,62	4.09	3.74	4.59	4.05	3,35	2,92	3.18	3.18	41.81
	predicted runoff, upland CN=	9/	0,71	0.82	1.64	1,45	1.81	1,54	2.20	1.78	1.25	96.0	1.14	1.14	16.44
	predicted runoff, ash site CN=	74	0,62	0.73	1.50	1.32	1.66	1,41	2.04	1.64	1.14	98.0	1.03	1.03	14.96
for compa	for comparison purposes only, consider the following Maximum Monthly Values	owing	5.79	7.26	9.45	6.18	90.6	13.20	8.46	8.06	6.94	5.02	7.39	8.21	94.99
	maximum annual total rainfall														55.56
	Wet Year Monthly Precipitation = Average Monthly	versoe Mon	thiv Pracin	Precipitation plus	1 Standard	Deviation h	ased on An	Deviation based on Annual Rainfal							
	Month	0	Jan	Feb	Mar	Apr	Mav	Jun		Aug	Sep	ö	Nov	Dec	total
	Predicted Monthly Precipitation		2.94	3,15	4.51	4.22	4.77	4.36	5,35	4.73	3,90	3.41	3.71	3,71	48,78
	departure of adusted rainfall from average	verage	0.42	0.45	0.64	09.0	0.68	0.62	0.76	0.68	0.56	0.49	0.53	0.53	
	predicted runoff, composite, CN=	85	1.55	1.74	2.94	2,68	3.18	2.80	3,72	3,14	2.39	1.95	2.22	2.22	30.54
	predicted runoff, reservoir CN=	100	2.94	3.15	4.51	4.22	4.77	4,36	5.35	4.73	3.90	3.41	3.71	3.71	48.78
	predicted runoff, upland CN=	92	0.97	1.12	2.14	1.91	2.35	2.02	2.83	2.32	1.67	1.30	1.52	1.52	21.66
	predicted runoff, ash site CN=	74	0.87	1.01	1.98	1.76	2.18	1.87	2.65	2.15	1.53	1.18	1.39	1.39	19.95
	Very Wet Year Monthly Precipitation = Average Monthly	n = Average		recipitation	plus 1-1/2	Precipitation plus 1-1/2 Standard Deviation based on Annual Precipitation	eviation bas	sed on Annu	al Precipita	tion					
	Month		Jan	Feb	Mar	Арг	May	Jun	lul	Aug	Sep	Oct	Nov	Dec	total
	Predicted Monthly Precipitation		3.15	3.38	4.84	4.52	5.11	4.67	5.74	5.07	4.18	3.65	3.98	3.98	52.26
	departure of adusted rainfall from average	verage	0.63	0.68	0.97	06.0	1.02	0.93	1.15	1.01	0.84	0.73	0.80	0.80	
	predicted runoff, composite, CN=	85	1.73	1.93	3.24	2.95	3.49	3.09	4.08	3.45	2.64	2.17	2.46	2,46	33.69
	predicted runoff, reservoir CN=	100	3.15	3,38	4.84	4.52	5.11	4.67	5,74	2.07	4.18	3,65	3.98	3.98	52.26
	predicted runoff, upland CN=	92	1:12	1.28	2:40	2,15	2.63	2.27	3,15	2.59	1.88	1.48	1.72	1:72	24.38
	predicted runoff, ash site CN=	74	1.00	1.16	2.23	1.99	2.45	2.11	2.96	2.42	1.73	1.35	1.58	1.58	22.56
														l	

Allegheny Energy Pleasants Power Station McElroy's Run Disposal Site

Extremely Wet Year Monthly Precipitation = A	Aver	onthly Precip	sitation plus	2 Standard	Deviation b	ased on An	nual Precipi	tation					
Month	Jan	Feb	Mar	Apr	May	Jun	InC	Aug	Sep	Oct	Nov	Dec	total
Predicted Monthly Precipitation	3.36	3.60	5.16	4.82	5.45	4.98	6.12	5.41	4.46	3.89	4.24	4.24	55.75
departure of adusted rainfall from average	0.84	06.0	1.29	1.21	1.36	1.25	1.53	1.35	1.12	0.97	1.06	1.06	
predicted runoff, composite, CN= 85	1.91	2.13	3,54	3.23	3.81	3.38	4.44	3.77	2.90	2.38	2.70	2.70	36,87
predicted runoff, reservoir CN= 100	3.36	3.60	5.16	4.82	5.45	4.98	6.12	5.41	4.46	3.89	4.24	4.24	55,75
predicted runoff, upland CN= 76	1,26	1.44	2.67	2.39	2.91	2.52	3.48	2.87	2.10	1.66	1,93	1.93	27.16
predicted runoff, ash site CN= 74	1.14	1.31	2.49	2,23	2.73	2.35	3.28	2.69	1.94	1.52	1.78	1.78	25,25

proposed re-route of siphon

FIGURE 2 WATER BALANCE FLOW DIAGRAM

indicates value obtained from another worksheet in this spreadsheet
indicates required manual input of value by user
indicates value obtained from Allegheny Energy Supply/Pleasants Power Station

DESIGN DATA	Average Year	Year	90% Co	90% Confidence
	flow (maa)	volume (ac-ft)	(map)	volume (ac-ft)
INFLOWS	1708	2755	2077	3350
Annual Precipitation in Reservoir	522	841	652	1052
Upland Runoff	328	530	487	785
Ash Disposal Site Runoff	158	254	238	384
Slurry Flows *	009	896	009	896
Ash Disposal Site Leachate	100	161	100	161
OUTFLOWS	1721	2776	2077	3350
Siphon Discharge ***	1300	2097	1735	2799
Mix Tank Siphon Withdrawal **	200	323	200	323
Average Evaporation	421	629	342	552

Station Slurry Flow set at 600 gpm, based on review by Ray Kustra
 Mix Tank Siphon Withdrawal set at 200 gpm, estimate made by Ralph Curtiss & Ray Kustra
 For the Average Year, the hydraulic capacity of the existing siphon is shown
 For the 90% Confidence, the minimum hydraulic capacity of the improved siphon is shown.
 Note: See Worksheet "reservoir_operation" for actual tracking of flows and volumes into and from the reservoir.

Allegheny Energy Pleasants Power Station McElroy's Run Disposal Facility

Outline of Analyses

Reservoir Management Study Water Balance Reservoir_Operation

GAI Project 1999-170-45 by KL^Cdate checked DRH (2-6-02

I. Average Year Analysis: Average Precipitation and Average Evaporation Predict the response, on a monthly basis, of reservoir levels during an "Average Year". I.A. Inflows (Average Monthly Precipitation onto Reservoir Area I.A.3. Runoff from Upland Area I.A.4. Sulury Flows I.B. Outflows I.B. Sphon Discharge (Current Capacity) I.C. Mass Balance of Inflows and Outflows I.C. Mass Balance of Inflows and Outflows I.E. Conclusion II. Estimated Minimum Total Reservoir Discharge Frequired to Maintain a Given Reservoir Level Over the Course of a Year with Average Precipitation with Below-Average Evaporation III. B. Mass Balance of Inflows and Outflows III. Summary of Analysis III. Wet Year Analysis: Above-Average Precipitation with Below-Average Evaporation Predict the response, on a monthly basis, of reservoir levels during a "Wet Year" A "Wet Year" is based on the Average Annual Precipitation plus One (1) Standard Deviation.	Δ	Data Summary Reservoir Normal Operating Level Station Slurry (Process) Flows, long-term average Gypsum Process/Mix Tank Withdrawal, est. long-term average Siphon, flow monitor measurement Net Siphon, considering Mix Tank operation Leachate Flows from Sediment Pond, ultimate development Reservoir Elevation-Area-Volume Rating Table	flowchart flowchart flowchart flowchart flowchart
 I.B. Outflows I.B.1. Siphon Discharge (Current Capacity) I.B.2. Evaporation (Average Monthly Evaporation, "Lake") I.C. Mass Balance of Inflows and Outflows I.C. Mass Balance of Inflows and Outflows I.E. Conclusion II. Minimum Required Total Reservoir Discharge for an "Average" Year What is the Minimum Total Reservoir Discharge Required to Maintain a Given Reservoir Level Over the Course of a Year What is the Minimum Discharge and Monthly Discharge Volume II.B. Mass Balance of Inflows and Outflows II.C. Summary of Analysis II.C. Summary of Analysis III. Wet Year Analysis: Above-Average Precipitation with Below-Average Evaporation Predict the response, on a monthly basis, of reservoir levels during a "Wet Year" A "Wet Year" is defined here as a year in which the total annual precipitation has approximately a 15 percent probability of being exceeded. A "Wet Year" is based on the Average Annual Precipitation plus One (1) Standard Deviation. 		Average Year Analysis: Average Precipitation and Average Evaporation Predict the response, on a monthly basis, of reservoir levels during an "Average I.A. Inflows (Average Monthly Precipitation & Design Estimates) I.A.1. Direct Precipitation onto Reservoir Area I.A.2. Runoff from Upland Area I.A.3. Runoff from Ash Site (Sediment Pond Effluent System) I.A.4. Slurry Flows I.A.5. Sediment Pond Base Flow	Year". Rainfall_Parkersburg_WSO Runoff Runoff flowchart
 II. Minimum Required Total Reservoir Discharge for an "Average" Year What is the Minimum Total Reservoir Discharge Required to Maintain a Given Reservoir Level Over the Course of a Year with Average Precipitation and Average Evaporation? II.A. Estimated Minimum Discharge and Monthly Discharge Volume II.B. Mass Balance of Inflows and Outflows II.C. Summary of Analysis III. Wet Year Analysis: Above-Average Precipitation with Below-Average Evaporation Predict the response, on a monthly basis, of reservoir levels during a "Wet Year". A "Wet Year" is defined here as a year in which the total annual precipitation has approximately a 15 percent probability of being exceeded. A "Wet Year" is based on the Average Annual Precipitation plus One (1) Standard Deviation. 		Outflow Mass E Summa Conclu	Station measurement Evaporation calc
	_=	Minimum Required Total Reservoir Discharge for an "Average" Year What is the Minimum Total Reservoir Discharge Required to Maintain a Given F with Average Precipitation and Average Evaporation? II.A. Estimated Minimum Discharge and Monthly Discharge Volume II.B. Mass Balance of Inflows and Outflows II.C. Summary of Analysis	eservoir Level Over the Course of a Year
III A Inflows	_=:		on r". ss approximately a 15 percent ird Deviation.

III.A.1. Direct Precipitation onto Reservoir Area III.A.2. Runoff from Upland Areas III.A.3. Runoff from Ash Site (Sediment Pond Effluent System) III.A.4. Slurry Flows III.A.5. Sediment Pond Base Flow

Reservoir Management Study Water Balance Reservoir_Operation

GAI Project 1999-170-45 by KL date checked DRH 12-6-62

III. Wet Year Analysis: Above-Average Precipitation with Below-Average Evaporation III.B. Outflows

(con't)

III.B.1. Siphon Discharge (Current Design Capacity)

III.B.2. Evaporation (Below-Average Monthly Evaporation ("Lake")

III.C. Mass Balance of Inflows and Outflows

III.D. Summary of Analysis

IV. Minimum Required Total Reservoir Discharge for a "Wet Year"

What is the Minimum Total Reservoir Discharge Required to Maintain a Given Reservoir Level Over the Course of a Year with Above-Average Precipitation and Below-Average Evaporation?

Above-Average Precipitation is Set as the Average Annual Precipitation plus One (1) Standard Deviation.

The Probability that a year would have a total precipitation greater than this precipitation is about 15%.

IV.A. Estimated Minimum Discharge and Discharge Volume

IV.B. Mass Balance of Inflows and Outflows

IV.C. Summary of Analysis

V. Sensitivity Analysis # 1:

What Reservoir Level Would Result for a "Wet Year" if the Total Reservoir Discharge is Based on an "Average Year"?

IV.A. Estimated Minimum Discharge and Discharge Volume

IV.B. Mass Balance of Inflows and Outflows

What Reservoir Level would result for a "Very Wet Year" under Current Siphon Discharge Conditions? VI. Very Wet Year Analysis: More-than-Above Average Precipitation with Below-Average Evaporation

A "Very Wet Year" is defined as a year in which the Annual Precipitation that occurs has a 10% or less probability of being exceeded.

The precipitation that would have a 10% or less probability of occurring corresponds approximately to the Average Annual Precipitation plus One-and-One-Half (1-1/2) Standard Deviation.

VI.A. Inflows

VI.A.1. Direct Precipitation onto Reservoir Area

VI.A.2. Runoff from Upland Areas

VI.A.3. Runoff from Ash Site (Sediment Pond Effluent System)

VI.A.4. Slurry Flows

VI.A.5. Sediment Pond Base Flow

VI.B. Oufflows

VI.B.1. Siphon Discharge (Current Design Capacity)

VI.B.2. Evaporation (Below-Average Monthly Evaporation ("Lake")

VI.C. Mass Balance of Inflows and Outflows

VI.D. Estimated Minimum Discharge and Discharge Volume

VI.E. Summary of Analysis

1999/99170/minhydq_rev1/reservoir_operation/klf/12/04/2002/4:12 PM/2 of 22

Reservoir Management Study Water Balance Reservoir_Operation

Checked DRH 12-6-02

by Kuc date

GAI Project 1999-170-45

VII. Minimum Required Total Reservoir Discharge for a "Very Wet Year"

What is the Minimum Total Reservoir Discharge Required to Maintain a Given Reservoir Level Over the Course of a Year with More-Than-Above-Average Precipitation and Below-Average Evaporation?

The probability that this amount of precipitation would occur is approximately ten (10) percent or less.

VII.A. Mass Balance of Inflows and Outflows

VII.B. Estimated Minimum Discharge and Discharge Volume

VII.C. Summary of Analysis

VIII. Minimum Total Reservoir Discharge for an "Extremely Wet Year"

What is the Minimum Total Reservoir Discharge to Maintain a Given Reservoir Level Over the Course of a Year with a Greatly-More-Than-Above-Average Precipitation and Below-Average Evaporation?

(92% confidence). The Probability that a year would have a total precipitation greater than this precipitation is about 2%. Greatly-More-Than-Above Precipitation is set as the Average Annual Precipitation plus Two (2) Standard Deviations

VIII.A. Estimated Minimum Discharge and Discharge Volume

VIII.B. Mass Balance of Inflows and Outflows

VIII.C. Summary of Analysis

VIII. Compare Reservoir Range Fluctuations with Maximum Normal Pool Level for the Reservoir.

IX. Evaluate Fluctuation of the Reservoir during the Course of the Year Analyzed

X. Plot of Monthly Reservoir Elevation Performance for Selected Discharge Rates

1999/99170/minhydq_rev1/reservoir_operation/klf/12/04/2002/4:12 PM/3 of 22

Reservoir Management Study Water Balance Reservoir_Operation

GAI Project 1999-170-45 by んぱく date checked DRH 12-6ー02

Worksheet Reference flowchart flowchart flowchart calc flowchart	Elev_Area_Volume																								
ft, mst gpm gpm gpm gpm																									
887.00 600 200 1100 1300		ting Table																							
n average opment		Reservoir Water Elevation-Storage Volume Rating Table	Water	Elevation (ft, msl)	877	878	879	880	882	883	884	885	988	887	000	068	891	892	893	895	968	897	868	839	006
average :. long-tern in nate develo	able	tion-Storag	Surface	Area (ac)	175	190	202	214	223	226	230	234	238	241	250	255	258	260	263	268	271	274	276	279	282
rel long-term a idrawal, est ient nk operatio Pond, ultiri	ie Rating T	Vater Eleval	Storage	Volume (ac-ft)	14651	14833	15029	15237	15674	15898	16127	16359	16595	16835	17326	17578	17835	18094	18355	18887	19157	19429	19704	19982	20263
perating Leves, sss) Flows, x Tank With r measurem ring Mix Tan Sediment	Area-Volum	Reservoir V	Water	Elevation (ft, msl)	877 00	878.00	879.00	880.00	882.00	883.00	884.00	885.00	886.00	887.00	889.00	890.00	891.00	892.00	893.00	895.00	896.00	897.00	898.00	899.00	900.00
Reservoir Normal Operating Level Station Slurry (Process) Flows, long-term average Gypsum Process/Mix Tank Withdrawal, est. long-term average Siphon, flow monitor measurement Net Siphon, considering Mix Tank operation Leachate Flows from Sediment Pond, ultimate development	Reservoir Elevation-Area-Volume Rating Table																								
Data Summary Ress Stati Gyp Siph Net:																									

Reservoir Management Study Water Balance Reservoir_Operation

GAI Project 1999-170-45 by んしん date . checked DRH (2-6-02

			Dec 3.18 241.5	64.05		Dec 1.14 386.5 36.72	Dec 1.03 204 17.45		118.22		Dec 600 100 82.20
			3.18 3.48 241.5	64.05		Nov 1.14 386.5 36.72	Nov 1.03 204 17.45	System n.	118.22		Nov 600 100 79.55
			Oct 2.92 241.5	58.79		Oct 0.96 386.5 31.00	Oct 0.86 204 14.60	nd Effluent ut 1150 gpr	104.38		Oct 600 100 82.20
			Sep 3.35 241.5	67.34		Sep 1.25 386.5 40.42	Sep 1.14 204 19.30	ediment Por rve) is abou	127.06		Sep 600 100 79.55
	0		Aug 4.05 241.5	81.60		Aug 1.78 386.5 57.35	Aug 1.64 204 27.82	ed to the Se n, 1 in rese	166.78		Aug 600 100 82.20
	ersburg_ws		Jul 4.59 241.5	92.35		Jul 2.20 386.5 70.89	Jul 2.04 204 34.70	ds is directe in operatio	197.94		Jul 600 100 82.20
	flowchart rainfall_parkersburg_wso		Jun 3.74 241.5	75.24	tation.	Jun 1.54 386.5 49.63	Jun 1.41 204 23.93	om the pon	148.80		Jun 600 100 79.55
	# 2		May 4.09 241.5	82.26	s of precipi	May 1.81 386.5 58.17	May 1.66 204 28.23	. Outflow frapacity of the	168.66	02)	May 600 100 82.20
poration erage Yea	ft, msl inches percent		Apr 3.62 241.5	72.83	erage value	Apr 1.45 386.5 46.77	Арг 1.32 204 22.48	ment ponds ne design ผ	142.08	vember 20	Apr 600 100 79.55
erage Eva	887.00 ft 41.81 ii 50 p		Mar 3.87 241.5	77.87	monthly av	Mar 1.64 386.5 52.80	Mar 1.50 204 25.52	to the sedii eservoir. Th	156.19	revised No	Mar 600 100 82.20
n and Aver		ates)	Feb 2.70 241.5	54.40	average of	Feb 0.82 386.5 26.43	n) Feb 0.73 204 12.34	l site drains bed to the re	93.17	nber 2001,	Feb 600 100 74.25
ecipitatio of reservoi	3 LEVEL ON	esign Estim			= long-term	Jan 0.71 386.5 22.72	luent Syster Jan 0.62 204 10.51	ash disposa d then pump	83.91	ıate, Decen	Jan 600 100 82.20
. Average Year Analysis: Average Precipitation and Average Evaporation Predict the response, on a monthly basis, of reservoir levels during an "Average Year"	NORMAL RESERVOIR OPERATING LEVEL AVERAGE ANNUAL PRECIPITATION PROBABILITY OF EXCEEDANCE	I.A. Inflows (Average Monthly Precipitation & Design Estimates)	Month Average Monthly Values Average Reservoir Area (acres)	(reservoir rever) (reservoir) Inflow Volume (ac-ft) 50.67	Note: Average Monthly Values = long-term average of monthly average values of precipitation.	I.A.2. Runoff from Upland Area Month Average Monthly Values Average Upland Area (acres) Inflow Volume (ac-ft)	I.A.3. Runoff from Ash Site (Sediment Pond Effluent System) Month Average Monthly Values Average Disposal Area (acres) Inflow Volume (ac-ft) 10.51 12.51	NOTE: Runoff from the ash disposal site drains to the sediment ponds. Outflow from the ponds is directed to the Sediment Pond Effluent System lift station, and then pumped to the reservoir. The design capacity of the pumps (2 in operation, 1 in reserve) is about 1150 gpm.	Total Rainfall-Runoff Inflow Volume (ac-ft)	.A.4. Slurry Flows (based on Station estimate, December 2001, revised November 2002)	Month Average Monthly Value (gpm) Percent of Time in Operation Inflow Volume (ac-ft)

Reservoir Management Study Water Balance Reservoir_Operation

I. Averaç I.A.5. Sed	 Average Year Analysis: Average Precipitation and Average Evaporation Sediment Pond Base Flow (based on design predictions, u	itation and Average Evaporation (based on design predictions, ultimate pile development)	verage Eva esign predi	poration ictions, ultir	nate pile d	еvеІортеп	ĵ.						
	Month Average Monthly Value (gpm) Percent of Time in Operation Inflow Volume (ac-ft)	Jan 100 100 13.70	Feb 100 100 12.37	Mar 100 100 13.70	Apr 100 100 13.26	May 100 100 13.70	Jun 100 100 13.26	Jul 100 100 13.70	Aug 100 100 13.70	Sep 100 100 13.26	Oct 100 100 13.70	Nov 100 100 13.26	Dec 100 100 13.70
I.B. Outflows	swo												
1.B.1. Sip	I.B.1. Siphon Discharge (Current Capacity) Use the Net Siphon Discharge, which equals to Month Average Monthly Value (gpm) 1300 Percent of Time in Operation 100 Discharge Volume (ac-ft) 178.11	hich equals to Jan 1300 100 178.11		measured siphon line flow less the Station withdrawal for mix tank uses Feb Mar Apr May Jun Jul A 1300 1300 1300 1300 1300 1300 1 100 100 100 100 100 100 100 160.87 178.11 172.36 178.11 17	Tow less the Apr 1300 100 172.36	Station with May 1300 100 178.11	thdrawal for Jun 1300 100 172.36	mix tank us Jul 1300 100 178.11	ses Aug 1300 100 178.11	Sep 1300 100 172.36	Oct 1300 100 178.11	Nov 1300 100 172.36	Dec 1300 100 178.11
I.B.2. Eve	Evaporation (Average Monthly Evaporation, "Lake") data provided by U.S. Army Corps of Engineers,	ation, "Lake") s of Engineer	· · ·	Huntington District, WV, for Clarksburg WV, 1948-1964.	V, for Clark	sburg WV,	1948-1964.						
	Month evaporation (inches) Reservoir Area (acres)	Jan 1.27 241.5	Feb 1.27 241.5	Mar 1.27 241.5	Apr 3.50 241.5	May 4.39 241.5	Jun 5.00 241.5	Jul 5.51 241.5	Aug 4.33 241.5	Sep 2.78 241.5	Oct 1.90 241.5	Nov 1.27 241.5	Dec 1.27 241.5
	Evaporative Loss (ac-ft)	25.54	25.54	25.54	70.41	88.30	100.52	110.94	87.16	55.92	38.26	25.54	25.54
I.C. Mass I.C.1. De	.C. Mass Balance of Inflows and Outflows .C.1. Determination of Individual Component Volumes an	t Volumes an		d Net Changes to Reservoir Volume	rvoir Volum€	ω							
	Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1.C.1.a.1	Inflows to Reservoir Direct Rainfall (ac-ft)	179.81 50.67	179.80 54.40	252.10 77.87	234.89 72.83	264.56 82.26	241.61 75.24	293.84 92.35	262.68 81.60	219.87 67.34	200.29 58.79	211.03 64.05	214.12 64.05
I.C.1.a.2	Upland Areas (ac-ft)	22.72	26.43	52.80	46.77	58.17	49.63	70.89	57.35	40.42	31.00	36.72	36.72
I.C.1.a.4	Slurry Disposal (ac-ft)	82.20	74.25	82.20	79.55	82.20	79.55	82.20	82.20	79.55	82.20	79.55	82.20
I.C.1.a.5	Sediment Pond (ac-ft) Outflows from Reservoir	13.70 203.64	12.37 186.41	13.70 203.64	13.26 242.77	13.70 266.40	13.26 272.88	13.70 289.04	13.70 265.27	13.26 228.28	13.70 216.37	13.26 197.90	13.70 203.64
I.C.1.b.1 I.C.1.b.2	Siphon (Net, ac-ft) Evaporation (ac-ft)	178.11 25.54	160.87 25.54	178.11 25.54	172.36 70.41	178.11 88.30	172.36 100.52	178.11 110.94	178.11 87.16	172.36 55.92	178.11 38.26	172.36 25.54	178.11 25.54
l.C.1.c	Net Change in Reservoir Volume (ac-ft)	(23.84)	(6.61)	48.45	(7.88)	(1.84)	(31.27)	4.80	(2.59)	(8.41)	(16.08)	13.13	10.48

McElroy's Run Disposal Facility Pleasants Power Station Allegheny Energy

Reservoir Management Study Reservoir_Operation

12-6-02 GAI Project 1999-170-45 checked DRH

16,813 Dec 886.87 886.91 886.87 16,803 886.91 16595 16835 10.48 Dec 886 887 13.13 16,803 886.87 886.81 16,790 886 887 16595 16835 Nov 886.81 886.87 <u>ک</u> 886.88 16,806 886.88 (16.08) 886.81 886.81 16595 16835 AS OF 1 JANUARY OF FIRST YEAR OF ANALYSIS 886 887 ಕ Ö ಕ Ö 16,814 (8.41) 16,806 Sep 886.91 886.88 886.91 886.88 16595 16835 THEN AVERAGE PREDICTED RESERVOIR LEVEL AT THE END OF EACH SUCCEEDING MONTH WOULD BE AS GIVEN BELOW: Sep 886 887 Aug 886.92 886.91 886.92 16,817 (2.59) 16,814 886.91 886 887 16595 16835 Aug The Existing Siphon, given its current operation, has sufficient capacity to prevent an net increase in reservoir level 16,812 Jul 886.90 886.92 886.90 4.80 16,817 886.92 886 887 16595 16835 ₹ 886 887 16595 16835 Jun 887.03 886.90 887.03 16,843 (31.27) 886.90 ٦ 887.04 16,845 (1.84) 16,843 887.03 May 887.04 887.03 888 16835 17078 ft, msl May ac-ft 16,853 (7.88) 16,845 Apr 887.07 887.04 16835 887.07 887.04 887 888 16835 17078 Ap ft, msl ft, msl .C.2. Tracking Reservoir Elevations based on Net Changes in Reservoir Volume I. Average Year Analysis: Average Precipitation and Average Evaporation Mar 886.87 887.07 886.81 887.07 886.87 16,804 48.45 16,853 887.07 887 888 16835 17078 Mar Beginning Reservoir Volume at Normal Operating Water Level **BEGINNING NORMAL RESERVOIR OPERATING LEVEL** Monthly Tracking of Reservoir Volumes and Elevations Feb 886.90 886.87 886.90 16,811 (6.61) **16,804 886.87** 16595 16835 Maximum Reservoir Level During the Year 886 887 Feb Minimum Reservoir Level During the Year Jan 887.00 886.90 887 16,835 (23.84) 16,811 886.90 16595 16835 886 887 Jan Approx. Reservoir Water Level Net Change in Volume (ac-ft) high elevation of interpolation low elevation of interpolation high storage of interpolation low storage of interpolation first of month reservoir level last of month reservoir level Reservoir Water Level Reservoir Volume Reservoir Volume At Start of Month At End of Month .D. Summary of Analysis month Year 1 Conclusion

over the course of an average year.

McElroy's Run Disposal Facility Pleasants Power Station

Allegheny Energy

Reservoir Management Study Reservoir_Operation Water Balance

checked DRH 12-6-02

GAI Project 1999-170-45

by Kuf date

12 16,836 Dec 886.95 **887.00** Dec 214.12 64.05 36.72 17.45 82.20 201.73 176.19 886.95 16,824 887.00 16835 17078 13.70 25.54 12.40 887 888 ဝင္ပေ Using the above information and procedure, estimate the total reservoir discharge rate needed to maintain, at year's end, a "no net increase' in reservoir water level. Trial & Error Solution: Assume a Reservoir Discharge Rate, compute resulting End-of-the-Year Reservoir Level, and compare to First-of-the-Year Reservoir Level. 196.04 170.50 25.54 886.89 16,809 16,824 886.95 16595 Nov **211.03** 64.05 36.72 17.45 79.55 13.26 6835 14.99 886 887 ş 5 manually input this value until the "End-of-the-Year Reservoir Level" 16,809 886.95 16,823 **214.45** 176.19 38.26 (14.16)6595 6835 Oct 200.29 58.79 31.00 14.60 82.20 13.70 886 887 ö ö -14 This value must equal the "First-of-the-Year Reservoir Level" matches the "First-of-the-Year Reservoir Level" Sep 886.98 886.95 16,829 Sep 219.87 67.34 40.42 19.30 79.55 13.26 226.42 170.50 55.92 886.98 16,823 886.95 16595 16835 (6.55)886 Sep -Aug 886.98 886.98 Aug **262.68** 81.60 57.35 27.82 263.35 176.19 87.16 886.98 16,830 16,829 886.98 16595 16835 82.20 13.70 (0.67) 886 887 Aug 7 Assumed Starting Point for Analysis Jul 886.95 886.98 176.19 110.94 886.95 16,823 Jul 293.84 92.35 70.89 34.70 82.20 287.12 16,830 886.98 16595 16835 13.70 6.72 886 887 三 ^ Jun 241.61 75.24 49.63 23.93 79.55 13.26 271.03 170.50 100.52 (29.42)16,853 -29 16,823 886.95 Jun 887.07 886.95 887.07 16595 16835 886 887 Jun 264.48 176.19 16,853 887.07 16,853 May 887.07 887.07 May **264.56** 82.26 58.17 13.70 16835 17078 28.23 82.20 0.08 May 887 888 0 Apr 887.10 887.07 16,853 887.10 16,859 170.50 70.41 16835 17078 Apr **234.89** 72.83 46.77 22.48 79.55 13.26 **240.91** Minimum Required Total Reservoir Discharge for an "Average" Year (6.02)888 ft, msl Apr φ ft, msl ft, msl mdB ac-ft 1286 170.50 887.00 887.10 Mar 252.10 201.73 176.19 16,808 50 16,859 887.10 16835 17078 77.87 52.80 25.52 82.20 13.70 886.89 50.37 887 888 Mar 887 I.A. Estimated Minimum Discharge and Monthly Discharge Volume 16,813 -5 16,808 886.89 Feb 886.91 886.89 184.68 159.14 25.54 886.91 Feb 179.80 54.40 26.43 12.34 74.25 12.37 16595 16835 (4.88)Required NET Total Reservoir Discharge Capacity 886 887 Feb Maximum Reservoir Level during the Year -22 16,813 886.91 16,835 201.73 176.19 25.54 16595 16835 13.70 (21.92)50.67 22.72 10.51 82.20 886 887 Jan 887 Average Monthly Discharged Volume First-of-the-Year Reservoir Level End-of-the-Year Reservoir Level Approx. Reservoir Water Level II.B. Mass Balance of Inflows and Outflows high elevation of interpolation low elevation of interpolation nigh storage of interpolation low storage of interpolation Reservoir Discharge (ac-ft) Net Change in Reservoir Volume (ac-ft) Net Change in Volume Reservoir Water Level Outflows from Reservoir Sediment Pond (ac-ft) Slurry Disposal (ac-ft) Ash Disposal Areas Evaporation (ac-ft) Reservoir Volume Reservoir Volume Inflows to Reservoir Reservoir (ac-ft) At Start of Month At End of Month Upland Areas II.C. Summary of Analysis Year 1 Month

II.A.4. II.A.2. II.A.3.

II.A.1.

II.A.5 II.B. II.B.1. II.B.2. 886.89 886.95

886.95 886.89

March

Apr

ft, msl ft, msl

886.89 887.10

Maximum Reservoir Level During the Year

Fluctuation in reservoir Level

Minimum Reservoir Level During the Year

886.89 887.10

887.00

first of month reservoir level end of month reservoir level

month

Jan

886.91

Мaг

#

0.21

è

Reservoir Management Study Water Balance Reservoir_Operation

GAI Project 1999-170-45 by Kuc date . . checked Diz y 12-6-62

III. Wet Year Analysis: Above-Average Precipitation with Below-Average Evaporation	Je Precip	itation wif	h Below	Average E	Evaporati	uo						
Current Reservoir Discharge Capabilities NORMAL RESERVOIR OPERATING LEVEL SIPHON DISCHARGE CAPACITY WET YEAR ANNUAL PRECIPITATION PROBABILITY OF EXCEEDANCE	abilities VG LEVEL		887 1300 48.78 85	ft, msl gpm inches percent		flowchart capacity of rainfall_part	flowchart capacity of existing siphon rainfall_parkersburg_wso	hon so				
III.A. Inflows III.A.1. Direct Precipitation onto Reservoir Area	m											
Month Adj. Maximum Monthly Rainfall Average Reservoir Area (acres)	Jan 2.94 241.5	Feb 3.15 241.5	Mar 4.51 241.5	Apr 4.22 241.5	May 4.77 241.5	Jun 4.36 241.5	Jul 5.35 241.5	Aug 4.73 241.5	Sep 3.90 241.5	Oct 3.41 241.5	Nov 3.71 241.5	Dec 3.71 241.5
(reservoir level Normal Operating Level) Inflow Volume (ac-ft) 59.1	.evel) 59.12	63.47	90.85	84.96	95.97	87.78	107.74	95.20	78.56	68.58	74.73	74.73
III.A.2. Runoff from Upland Areas Month Adj. Maximum Monthly Runoff Average Upland Area (acres) Inflow Volume (ac-ft)	Jan 0.97 386.5 31.35	Feb 1.12 386.5 36.07	Mar 2.14 386.5 68.97	Apr 1.91 386.5 61.52	May 2.35 386.5 75.57	Jun 2.02 386.5 65.06	Jul 2.83 386.5 91.14	Aug 2.32 386.5 74.57	Sep 1.67 386.5 53.64	Oct 1.30 386.5 41.84	Nov 1.52 386.5 49.02	Dec 1.52 386.5 49.02
III.A.3. Runoff from Ash Site (Sediment Pond Effluent System) Month Adj. Maximum Monthly Runoff Average Disposal Area (acres) Inflow Volume (ac-ft) 17.17	Effluent Sy Jan 0.87 204 14.77	stem) Feb 1.01 204 17.12	Mar 1.98 204 33.72	Apr 1.76 204 29.94	May 2.18 204 37.08	Jun 1.87 204 31.73	Jul 2.65 204 45.04	Aug 2.15 204 36.57	Sep 1.53 204 25.95	Oct 1.18 204 20.01	Nov 1.39 204 23.62	Dec 1.39 204 23.62
NOTE: Runoff from the ash disposal lift station, and then pump	ash dispoon		s to the secreservoir.	noff from the ash disposal site drains to the sediment ponds. Outflow from the ponds is directed to the Sediment Pond Effluent System lift station, and then pumped to the reservoir. The design capacity of the pumps (2 in operation, 1 in reserve) is about 1150 gpm.	s. Outflow t	from the po the pumps (nds is direc 2 in operati	ted to the S on, 1 in rese	ediment Po erve) is abo	and Effluent out 1150 gpr	System n.	
Total Rainfall-Runoff Inflow Volume (ac-ft)	105.23	116.66	193.53	176.42	208.62	184.57	243.92	206.34	158.15	130.43	147.36	147.36
III.A.4. Slurry Flows												
Month Average Monthly Value (gpm) Percent of Time in Operation Inflow Volume (ac-ft)	Jan 600 100 82.20	Feb 600 100 74.25	Mar 600 100 82.20	Apr 600 100 79.55	May 600 100 82.20	Jun 600 100 79.55	Jul 600 100 82.20	Aug 600 100 82.20	Sep 600 100 79.55	Oct 600 100 82.20	Nov 600 100 79.55	Dec 600 100 82.20
III.A.5. Sediment Pond Base Flow												
Month Average Monthly Value (gpm) Percent of Time in Operation	Jan 100 100	Feb 100	Mar 100 100	Apr 100 100	May 100 100	700 100	Jul 100 100	Aug 100 100	Sep 100 100	00 100 100	Nov 100	Dec 100 100

Allegheny Energy Pleasants Power McElroy's Run Dis	Allegheny Energy Pleasants Power Station McElroy's Run Disposal Facility			L.	Reservoir Management Study Water Balance Reservoir_Operation	ervoir Management S Water Balance Reservoir_Operation	Study					GAI Proje by Kuゲ date checked ひR	GAI Project 1999-170-45 by Kuゲ date checked ひR + 12-6-02	170-45
	Inflow Volume (ac-ft)	13.70	12.37	13.70	13.26	13.70	13.26	13.70	13.70	13.26	13.70	13.26	13.70	
III. Wet Year /	III. Wet Year Analysis: Above-Average Precipitation with Below- III.B. Outflows	ecipitation v	vith Below-∕	Average Evaporation	aporation									
III.B.1. §	III.B.1. Siphon Discharge (Current Design Capacity) Use the Net Siphon Discharge, which equals to measured siphon line flow less the Station withdrawal for mix tank uses Net Siphon Discharge Capacity = 1300 com	apacity) hich equals 1300	to measured	siphon line	flow less the	s Station wi	thdrawal for	· mix tank u.	ses					
	Month Average Monthly Value (gpm) Percent of Time in Operation Discharge Volume (ac-ft)	Jan 1300 100 178.11	Feb 1300 100 160.87	Mar 1300 100 178.11	Apr 1300 100 172.36	May 1300 100 178.11	Jun 1300 100 172.36	Jul 1300 100 178.11	Aug 1300 100 178.11	Sep 1300 100 172.36	Oct 1300 100 178.11	Nov 1300 100 172.36	Dec 1300 100 178.11	
III.B.2. E	Evaporation (Below-Average Monthly Evaporation ("Lake") values based on data from U.S. Army Corps of Engineers,	· Evaporatio	n ("Lake") of Engineers,		Huntington District, WV, for Clarksburg WV, 1948-1964	', for Clarks	burg WV, 1	948-1964.						
	Month evaporation (inches) Reservoir Area (acres)	Jan 0.00 241.5	Feb 0.00 241.5	Mar 0.00 241.5	Apr 3.50 241.5	May 4.39 241.5	Jun 5.00 241.5	Jul 5.51 241.5	Aug 4.33 241.5	Sep 2.78 241.5	Oct 1.90 241.5	Nov 0.00 241.5	Dec 0.00 241.5	
	Evaporative Loss (ac-ft)	0.00	00.00	0.00	70.41	88.30	100.52	110.94	87.16	55.92	38.26	0.00	00.0	
III.C.	III.C. Mass Balance of Inflows and Outflows													
A.A. A.A.B. A.A.B. A.A.B. A.A.B. A.A.B. A.A.B. A.A.B. A.A.B. A.A.B. A.B.B. A.B.B	Month Jan Feb Inflows to Reservoir 201.13 203.28 Direct Rainfall (ac-ft) 59.12 63.47 Upland Areas (ac-ft) 31.35 36.07 Ash Disposal Area (ac-ft) 14.77 17.12 Slurry Disposal (ac-ft) 82.20 74.25 Sediment Pond (ac-ft) 13.70 12.37 Outflows from Reservoir 178.11 160.87 Siphon (Net, ac-ft) 178.11 160.87 Evaporation (ac-ft) 0.00 0.00 Net Change in Reservoir 23.03 42.41 Volume (ac-ft) 23.03 42.41 BEGINNING NORMAL RESERVOIR OPERATING LEVI Beginning Reservoir Volume at Normal Operating Water	Jan 201.13 59.12 31.35 14.77 82.20 13.70 178.11 0.00 23.03	Feb 203.28 63.47 36.07 17.12 74.25 12.37 160.87 0.00 42.41 42.41	Mar 289.44 90.85 68.97 33.72 82.20 13.70 178.11 0.00 111.33	Apr 269.23 84.96 61.52 29.94 79.55 13.26 242.77 172.36 70.41 26.46	May 304.52 95.97 75.57 37.08 82.20 13.70 266.40 178.11 88.30 38.12 ft, msl ac-ft ac-	Jun Jul Aug Sep Oct 277.38 339.82 302.25 250.96 226.33 87.78 107.74 95.20 78.56 68.58 65.06 91.14 74.57 53.64 41.84 31.73 45.04 36.57 25.95 20.01 79.55 82.20 82.20 79.55 82.20 13.26 13.70 13.70 13.26 13.70 172.38 289.04 265.27 228.28 216.37 100.52 110.94 87.16 55.92 38.26 4.50 50.78 36.98 22.68 9.97	Jul 339.82 107.74 91.14 45.04 82.20 13.70 289.04 178.11 110.94 50.78	Aug 302.25 95.20 74.57 36.57 82.20 13.70 265.27 178.11 87.16 36.98	Sep 250.96 78.56 53.64 25.95 79.55 13.26 228.28 172.36 55.92 22.68	Oct 226.33 68.58 41.84 20.01 82.20 13.70 216.37 178.11 38.26 9.97	Nov 240.17 74.73 49.02 23.62 79.55 13.26 172.36 0.00	Dec 243.27 74.73 49.02 23.62 82.20 13.70 178.11 178.11 0.00 65.16	

Reservoir Management Study Water Balance Reservoir_Operation

GAI Project 1999-170-45 by ku^C date checked DRH 12-6-02:

	III. Wet Year Analysis: Above-Average Precipitation		with Below-Average Evaporation R LEVEL AT THE END OF EACH SI	Average E v THE END C	with Below-Average Evaporation LEVEL AT THE END OF EACH SUCCEEDING MONTH WOULD BE	ICCEEDING	MONTH V	VOULD BE					
	Year 1	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	Reservoir Volume	887 16,835	887.09 16,858	887.27 16,900	887.73 17,012	887.84 17,038	887.99 17,076	888.01 17,081	888.22 17,131	888.36 17,168	888.46 17,191	888.50 17,201	888.77 17,269
	At End of Month Reservoir Volume Approx. Reservoir Water Level	16,858 887.09	16,900 887.27	17,012 887.73	17,038 887.84	17,076 887.99	17,081 888.01	17,131 888.22	17,168 888.36	17,191 888.46	17,201 888.50	17,269 888.77	17,334 889.03
	low elevation of interpolation high elevation of interpolation low storage of interpolation high storage of interpolation	887 888 16835 17078	887 888 16835 17078	887 888 16835 17078	887 888 16835 17078	887 888 16835 17078	888 889 17078 17326	888 889 17078 17326	888 889 17078 17326	888 889 17078 17326	888 889 17078 17326	888 889 17078 17326	889 890 17326 17578
G.	III.D. Summary of Analysis first of month reservoir level end of month reservoir level	Jan 887.00 887.09 Jan	Feb 887.09 887.27 Feb	Mar 887.27 887.73 Mar	Apr 887.73 887.84 Apr	May 887.84 887.99 May	Jun 887.99 888.01 Jun	Jul 888.01 888.22 Jul	Aug 888.22 888.36 Aug	Sep 888.36 888.46 Sep	Oct 888.46 888.50 Oct	Nov 888.50 888.77 Nov	Dec 888.77 889.03 Dec
	Minimum Reservoir Level During Waximum Reservoir Level During		the Year the Year	887.00 889.03	ft, msl ft, msl	Jan Dec		The existing	g siphon ca	The existing siphon cannot handle a "Wet Year",	a "Wet Ye	ar".	

Reservoir Management Study Water Balance Reservoir_Operation

IV. Min What with Above The P	IV. Minimum Required Total Reservoir Discharge for a "Wet Year" What is the Minimum Total Reservoir Discharge Required to Maintain a Given Reservoir Level Over the Course of a Year with Above-Average Precipitation and Below-Average Evaporation? Above-Average Precipitation is Set as the Average Annual Precipitation plus One (1) Standard Deviation. The Probability that a year would have a total precipitation greater than this precipitation is about 15%.	voir Discha Discharge Re nd Below-Ave the Average a total preci	irge for a quired to N rage Evapo Annual Pre pitation gre	le for a "Wet Year" ired to Maintain a Giv ge Evaporation? inual Precipitation plu ation greater than this	ar" Given Rese plus One (this precipi	rvoir Level I) Standard tation is ab	Over the C Deviation. out 15%.	ourse of a	Year				
	Annual "Wet Year" Precipitation Probability of Exceedance Number of Times Exceeded Since 1970	on nce 1970		48.78 16% 3	inches								
IV.A. ES:	IV.A. Estimated Minimum Discharge and Discharge Volume Trial & Error Solution: Assume a Reservoir Discharge Rate, compute resulting End-of-the-Year Reservoir Level, and compare to First-of-the-Year Reservoir Level.	ischarge Volur Reservoir Dis	ne charge Rate	, compute	resulting Er	nd-of-the-Ye	ar Reservoii	r Level, and	compare to	o First-of-th∘	e-Year Rese	ervoir Level	4 62
	First-of-the-Year Reservoir Level Required NET Total Reservoir Discharge Capacity Average Monthly Discharged Volume End-of-the-Year Reservoir Level Maximum Reservoir Level during the Year	/el Discharge Ca /olume el el ing the Year	apacity	887 1610 213.46 887.00 887.22	ft, msl gpm ac-ft ft, msl ft, msl	Assumed S manually in This value I	tarting Poin put this valt must equal t	Assumed Starting Point for Analysis manually input this value until the "End-of-the-Year Reservoir Level" This value must equal the "First-of-the-Year Reservoir Level"	is "End-of-the- the-Year R	-Year Resei eservoir Le	voir Level" vel"		
IV.B. Ma	IV.B. Mass Balance of Inflows and Outflows	ζ,											
IV.A. IV.A.2a. IV.A.2b. IV.A.3. IV.B.1. IV.B.1. IV.B.2.	Month Jan Feb Inflows to Reservoir 201.13 203.28 Direct Rainfall (ac-ft) 59.12 63.47 Upland Areas (ac-ft) 31.35 36.07 Ash Disposal Area (ac-ft) 82.20 74.25 Slurry Disposal (ac-ft) 82.20 74.25 Sediment Pond (ac-ft) 13.70 12.37 Outflows from Reservoir 220.58 199.23 Siphon (Net, ac-ft) 220.58 199.23 Evaporation (ac-ft) 0.00 0.00 Net Change in Reservoir (19.44) 4.05 Volume (ac-ft) Acc-ft) 4.05 Reservoir Volume at Assumed Reservoir Water Level Reservoir Water Level	Jan 201.13 59.12 31.35 14.77 82.20 13.70 220.58 0.00 (19.44) TING LEVEL Reservoir Watte	Feb 63.47 36.07 17.12 74.25 12.37 199.23 0.00 4.05	Mar 289.44 90.85 68.97 33.72 82.20 13.70 220.58 220.58 0.00 68.86	Apr 269.23 84.96 61.52 29.94 79.55 13.26 283.87 213.46 70.41 (14.64)	May 304.52 95.97 75.57 37.08 82.20 13.70 308.87 220.58 88.30 (4.35)	Jun 277.38 87.78 87.78 65.06 31.73 79.55 13.26 313.46 100.52 (36.60)	May Jun Aug 304.52 277.38 339.82 302.25 95.97 87.78 107.74 95.20 75.57 65.06 91.14 74.57 37.08 31.73 45.04 36.57 82.20 79.55 82.20 82.20 13.70 13.26 13.70 13.70 220.58 213.46 220.58 220.58 88.30 100.52 110.94 87.16 44.35) (36.60) 8.31 (5.49)	Aug 302.25 95.20 74.57 36.57 82.20 13.70 307.74 220.58 87.16 (5.49)	Sep 250.96 78.56 53.64 25.95 79.55 13.26 269.38 213.46 55.92	Oct 226.33 68.58 68.58 41.84 20.01 82.20 13.70 258.84 220.58 38.26 (32.51)	Nov 240.17 74.73 49.02 23.62 79.55 13.26 213.46 0.00	Dec 243.27 74.73 74.73 74.73 74.02 23.62 82.20 13.70 220.58 220.58 220.58 220.58 220.58 220.69

Reservoir Management Study Water Balance Reservoir_Operation

GAI Project 1999-170-45 by パーゲ date . checked DR H 12-ゆっこ

IV. Minimum Requ	IV. Minimum Required Total Reservoir Discharge for a "Wet Year" THEN THE PREDICTED RESERVOIR LEVEL AT THE ENI	charge for OIR LEVEI	a "Wet Yea - AT THE EI	ND OF EAC	"Wet Year" AT THE END OF EACH SUCCEEDING MONTH WOULD BE AS GIVEN BELOW:	DING MON	тн моис) BE AS GI	VEN BELO	:w			
Year 1		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
At Start	At Start of Month												
Reser	Reservoir Water Level	887.00	886.92	886.94	887.22	887.16	887.14	886.99	887.03	887.00	886.93	886.79	886.90
Reser	Reservoir Volume	16,835	16,815	16,819	16,888	16,874	16,869	16,833	16,841	16,836	16,817	16,785	16,811
At End c	At End of Month												
Net Ct	Net Change in Volume (ac-ft)	-19	4	69	-15	4	-37	80	-Ċ	-18	-33	27	23
Reser	Reservoir Volume	16,815	16,819	16,888	16,874	16,869	16,833	16,841	16,836	16,817	16,785	16,811	16,834
Appro	Approx. Reservoir Water Level	886.92	886.94	887.22	887.16	887.14	886.99	887.03	887.00	886.93	886.79	886.90	887.00
ale wol	low elevation of internolation	988	886	887	887	887	888	887	887	88	988	98	988
		0 0	9 6	000	5 6	5 6	200	5 6	5 6	0 0	9 1	0 1	2 1
high e	high elevation of interpolation	887	887	888	888	888	887	888	888	887	887	887	887
low str	low storage of interpolation	16595	16595	16835	16835	16835	16595	16835	16835	16595	16595	16595	16595
s hgih s	high storage of interpolation	16835	16835	17078	17078	17078	16835	17078	17078	16835	16835	16835	16835
IV.C. Summary of Analysis	Analysis												
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
first of m	first of month reservoir level	887.00	886.92	886.94	887.22	887.16	887.14	886.99	887.03	887.00	886.93	886.79	886.90
end of m	end of month reservoir level	886.92	886.94	887.22	887.16	887.14	886.99	887.03	887.00	886.93	886.79	886.90	887.00
		Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	1												
	Minimum Reservoir Level During th	/el During ti	e Year	886.79	ff, msl	Jan							
	Maximum Reservoir Level During the Year	vel During 1	the Year	887.22	ft, msl	Dec							

Reservoir Management Study Water Balance Reservoir_Operation

GAI Project 1999-170-45 by AG date checked DRH 12-6-02

V. Sens	Sensitivity Analysis # 1: What Reservoir Level Would Result for a "Wet Year" !	"Wet Year		f the Total Reservoir Discharge is Based on an "Average Year"?	r Dischare	besed si el	on an "Ave	rade Year"	ءِ ا				
	NORMAL RESERVOIR OPERATING LEVEL	NG LEVEL		887	887 ft, msl				•				
IV.A. Est	 IV.A. Estimated Minimum Discharge and Discharge Volume Trial & Error Solution: Assume a Reservoir Discharge Rate, compute resulting End-of-the-Year Reservoir Level, and compare to First-of-the-Year Reservoir Level. 	charge Volui eservoir Dis	me charge Rate	e, compute r	esulting Er	- nd-of-the-Ye # شما	ar Reservoii	r Level, and	compare to	o First-of-th	e-Year Res	ervoir Level	
	First-O-rite-Teal Reservoir Level Required Reservoir Discharge for Average Year	voir Level charge for ∤	4verage Yea	3r	1286	ıt, msi gpm	7	II.A.					
IV.A. Est	V.A. Estimated Minimum Discharge and Discharge Volume	harge Volui	me Fob	M	, ,	Moss	<u>.</u>	3	Š	Ö	ċ	Š	Ç
∀	Inflows to Reservoir	201 13	203 28	289 44	769 23	304 52	JUII 277 38	339.82	302 25	250 96	226.33	240 17	243.27
IV.A.2	Direct Rainfall (ac-ft)	59.12	63.47	90.85	84.96	95.97	87.78	107.74	95.20	78.56	68.58	74.73	74.73
IV.A.2.a.	Upland Areas (ac-ft)	31.35	36.07	68.97	61.52	75.57	65.06	91.14	74.57	53.64	41.84	49.02	49.05
IV.A.2.b.	Ash Disposal Area (ac-ft)	14.77	17.12	33.72	29.94	37.08	31.73	45.04	36.57	25.95	20.01	23.62	23.62
IV.A.3.	Slurry Disposal (ac-ft)	82.20	74.25	82.20	79.55	82.20	79.55	82.20	82.20	79.55	82.20	79.55	82.20
IV.A.4	Sediment Pond (ac-ft)	13.70	12.37	13.70	13.26	13.70	13.26	13.70	13.70	13.26	13.70	13.26	13.70
N.B.	Outflows from Reservoir	176.19	159.14	176.19	240.91	264.48	271.03	287.12	263.35	226.42	214.45	170.50	176.19
N.B.1.	Siphon (Net, ac-ft)	176.19	159.14	176.19	170.50	176.19	170.50	176.19	176.19	170.50	176.19	170.50	176.19
IV.B.2.	Evaporation (ac-ft)	0.00	0.00	0.00	70.41	88.30	100.52	110.94	87.16	55.92	38.26	0.00	0.00
Net Chan	Net Change in Reservoir Volume (ac-ft)	24.95	44.14	113.25	28.32	40.04	6.36	52.70	38.89	24.53	11.88	29.69	80.79
	BEGINNING NORMAL RESERVOIR OPERATING LEVEL Beginning Reservoir Volume at Normal Operating Water Level	IR OPERA rmal Opera	TING LEVEL ting Water Le	iL .evel	887 16835	ft, msl ac-ft	AS OF 1 JA	AS OF 1 JANUARY OF FIRST YEAR OF ANALYSIS	FIRST YE	EAR OF AN	ALYSIS		
	THEN THE PREDICTED RESERVOIR LEVEL AT THE END OF EACH SUCCEEDING MONTH WOULD BE AS GIVEN BELOW:	OIR LEVEL	. AT THE EI	ND OF EAC	H SUCCE	EDING MON	JTH WOULE	O BE AS GIV	VEN BELO	. <u>.</u>			
	Year 1	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
	At Start of Month Reservoir Water Level	887	887.10	887.28	887.75	887.87	888.03	888.06	888.27	888.43	888.52	888.57	888.85
	Reservoir Volume At End of Month	16835	16860	16904	17017	17045	17086	17092	17145	17183	17208	17220	17290
	Net Change in Volume	25	44	113	28	40	9	53	39	25	12	20	· 29
	Reservoir Volume	16860	16904	17017	17045	17086	17092	17145	17183	17208	17220	17290	17357
	Approx. Reservoir Water Level	887.10	887.28	887.75	887.87	888.03	888.06	888.27	888.43	888.52	888.57	888.85	889.12
	low elevation of interpolation	887	887	887	887	888	888	888	888	888	888	888	688
	high elevation of interpolation	888	888	888	888	889	889	889	688	889	889	889	068
	low storage of interpolation	16835	16835	16835	16835	17078	17078	17078	17078	17078	17078	17078	17326
	high storage of interpolation	17078	17078	17078	17078	17326	17326	17326	17326	17326	17326	17326	17578
	first of month reservoir level	Jan 887.00	Feb 887.10	Mar 887.28	Apr 887.75	May 887.87	Jun 888.03	301 888.06	Aug 888.27	Sep 888.43	988.52	Nov 888.57	888.85
	end of month reservoir level	887.10	887.28	67.788	887.87	888.03	888.06	888.2/	888.43	26.928	888.5/	888.83	889.12

Reservoir Management Study Water Balance Reservoir_Operation

VI. Very Wet Year Analysis: More-than-Above Average Precipitation with Below-Average Evaporation

What Reservoir Level would result for a "Very Wet Year" under Current Siphon Discharge Conditions? A "Very Wet Year" is defined as a year in which the Annual Precipitation that occurs has a 10% or less probability of being exceeded.

The precipitation that would have a 10% or less probability of occurring corresponds approximately to the Average Annual Precipitation plus One-and-One-Half (1-1/2) Standard Deviation.

Allinual Flecipitation plus Offe-and-Offe-hall (1-1/2) standard De

THIS IS THE PROPOSED DESIGN CONDITION

NORMAL RESERVOIR OPERATING LEVEL

VI.D. Estimated Minimum Discharge and Discharge Volume VI.A.1. Direct Precipitation on the Reservoir

Dec 3.98	241.5	80.06		Dec	1.72	386.5	55.46		Dec	1.58	204	26.87
Nov 3.98	241.5	90.08		Nov.	1.72	386.5	55.46		Nov	1.58	204	26.87
Oct 3.65	241.5	73.48		Oct	1.48	386.5	47.55		Oct	1.35	204	22.87
Sep 4.18	241.5	84.18		Sep	1.88	386.5	60.54		Sep	1.73	204	29.44
Aug 5.07	241.5	102.00		Aug	2.59	386.5	83.48		Aug	2.42	204	41.12
Jul 5.74	241.5	115.43		Jul	3.15	386.5	101.57		lης	2.96	204	50.39
Jun 4.67	241.5	94.05		Jun	2.27	386.5	73.08		Jun	2.11	204	35.81
May 5.11	241.5	102.82		May	2.63	386.5	84.57		May	2.45	204	41.68
Apr 4.52	241.5	91.03		Apr	2.15	386.5	69.20		Apr	1.99	204	33.84
Mar 4.84	241.5	97.34		Mar	2.40	386.5	77.35	m)	Mar	2.23	204	37.99
Feb 3.38	241.5	68.00		Feb	1.28	386.5	41.17	_	Feb	1.16	204	19.67
Jan 3.15	241.5 Level)	63.34		Jan	1.12	386.5	35.93	ent Pond Ef	Jan	1.00	204	17.05
Month Adj. Maximum Monthly Rainfall	Average Reservoir Area (acres) 241.5 (reservoir level Normal Operating Level)	Inflow Volume (ac-ft)	VI.A.2. Runoff from Upland Areas	Month	Adj. Maximum Monthly Runoff	Average Upland Area (acres)	Inflow Volume (ac-ft)	VI.A.3 Runoff from Ash Disposal Site (Sediment Pond Eff	Month	Adj. Maximum Monthly Runoff	Average Disposal Area (acres)	Inflow Volume (ac-ft)

NOTE: Runoff from the ash disposal site drains to the sediment ponds. Outflow from the ponds is directed to the Sediment Pond Effluent System lift station, and then pumped to the reservoir. The design capacity of the pumps (2 in operation, 1 in reserve) is about 1150 gpm.

Reservoir Management Study Water Balance Reservoir_Operation

VI. Very Wet Year Analysis: More-than-Above Average Precipitation with Below-Average Evaporation VI.A.5 Sediment Pond Underdrain Flows

	Month Average Monthly Value (gpm) Percent of Time in Operation Inflow Volume (ac-ft)	Jan 100 13.70	Feb 100 100	Mar 100 100 13.70	Apr 100 100 13.26	May 100 100 13.70	Jun 100 100 13.26	Jul 100 100 13.70	Aug 100 100 13.70	Sep 100 100 13.26	Oct 100 100 13.70	Nov 100 100 13.26	Dec 100 100 13.70
VI.B. Outflows	fflows												
VI.B.1 Si	VI.B.1 Siphon Discharge (Current Discharge Capacity) Net Siphon Discharge Capacity = 1300 Month Jan Average Monthly Value (gpm) 1300 Percent of Time in Operation 100 Discharge Volume (ac-ft) 178.11		gpm Feb 1300 100 160.87	100 Mar 1300 100 178.11	percent of the time Apr May 1300 1300 100 100	the time May 1300 100 178.11	Jun 1300 100 172.36	Jul 1300 100 178.11	Aug 1300 100 178.11	Sep 1300 100 172.36	Oct 1300 100 178.11	Nov 1300 100 172.36	Dec 1300 100 178.11
VI.B.2 E	VI.B.2 Evaporation (Below-Average) values based on data from U.S. Army Corps of	my Corps (of Engineers,		Huntington District, WV, for Clarksburg WV, 1948-196	V, for Clark	sburg WV, 1	948-1964.					
	Month evaporation (inches) Reservoir Area (acres) Evaporative Loss (ac-ft)	Jan 0.00 241.5 0.00	Feb 0.00 241.5 0.00	Mar 0.00 241.5 0.00	Apr 3.50 241.5 70.41	May 4.39 241.5 88.30	Jun 5.00 241.5 100.52	Jul 5.51 241.5 110.94	Aug 4.33 241.5 87.16	Sep 2.78 241.5 55.92	Oct 1.90 241.5 38.26	Nov 241.5 0.00	Dec 241.5 0.00
III.C. Ma	III.C. Mass Balance of Inflows and Outflows												
A. A. A. A. A. 2.5 A. A. 2.6 A. A. 3.6 B. B. 1.6 B. B. 1.6 B. B. 2.6	Month Jan Feb Inflows to Reservoir 212.22 215.46 Direct Rainfall (ac-ft) 63.34 68.00 Upland Areas (ac-ft) 35.93 41.17 Ash Disposal Area (ac-ft) 17.05 19.67 Slurry Disposal (ac-ft) 82.20 74.25 Sediment Pond (ac-ft) 13.70 12.37 Outflows from Reservoir 178.11 160.87 Siphon (Net, ac-ft) 178.11 160.87 Evaporation (ac-ft) 0.00 0.00 Net Change in Reservoir 34.11 54.59 Volume (ac-ft) 34.11 54.59	Jan 212.22 63.34 35.93 17.05 82.20 13.70 178.11 0.00 34.11	Feb 215.46 68.00 41.17 19.67 74.25 12.37 160.87 160.87 0.00 54.59	Mar 308.59 97.34 77.35 37.99 82.20 13.70 178.11 178.11 0.00	Apr 286.88 91.03 69.20 33.84 79.55 13.26 242.77 172.36 70.41	May 324.98 102.82 84.57 41.68 82.20 13.70 266.40 178.11 88.30 58.58	Jun 295.75 94.05 73.08 35.81 79.55 13.26 272.88 172.36 100.52 AS OF 1 JA	Jul 363.30 115.43 101.57 50.39 82.20 13.70 289.04 178.11 110.94	Aug 322.51 102.00 83.48 41.12 82.20 13.70 265.27 178.11 87.16 57.24	Jun Jul Aug Sep Oct 295.75 363.30 322.51 266.97 239.88 94.05 115.43 102.00 84.18 73.48 73.08 101.57 83.48 60.54 47.55 35.81 50.39 41.12 29.44 22.87 79.55 82.20 79.55 82.20 13.26 13.70 13.70 13.26 13.70 272.88 289.04 265.27 228.28 216.3 100.52 110.94 87.16 55.92 38.26 22.86 74.26 57.24 38.69 23.44	Oct 239.80 73.48 47.55 22.87 82.20 13.70 216.37 178.11 38.26 23.44	Nov 255.20 80.06 55.46 26.87 79.55 13.26 172.36 0.00	Dec 258.30 80.06 55.46 26.87 82.20 13.70 178.11 0.00
	Beginning Reservoir Volume at Normal Operating Water Level	ormal Opera	ating Water I	evel	16835	ac-ft							

Reservoir Management Study Water Balance Reservoir_Operation

GAI Project 1999-170-45 by Ker date checked DRH 12-4-02

VI. Very Wet Year Analysis: More-than-Above Average Precipitation with Below-Average Evaporation
THEN AVERAGE PREDICTED RESERVOIR LEVEL AT THE END OF EACH SUCCEEDING MONTH WOULD BE

Oct Nov Dec	388.46 888.50 888.77 17191 17201 17269	23 83 80 17215 17284 17349 888.55 888.83 889.09	888 889 889 880 17078 17078 17326 17326 17326 17578	Oct Nov Dec 888.46 888.50 888.77 888.55 888.83 889.09 Oct Nov Dec
Sep C	888.36 888 17168 17	39 2 17207 17 888.52 888	888 8 889 8 17078 17 17326 17	Sep C 888.36 884 888.52 884 Sep C
Aug	888.22 17131	57 17189 888.45	888 889 17078 17326	Aug 888.22 888.45 Aug
Jul	888.01 17081	74 17155 888.31	888 889 17078	Jul 888.01 888.31 Jul
Jun	887.99 17076	23 17099 888.08	888 889 17078 17326	Jun 887.99 888.08 Jun
May	887.84 17038	59 17097 888.07	888 889 17078 17326	May 887.84 888.07 May
Apr	887.73 17012	44 17056 887.91	888 888 16835 17078	Apr 887.73 887.91 Apr
Mar	887.27 16900	130 17031 887.81	888 16835 17078	Mar 887.27 887.81 Mar
Feb	887.09 16858	55 16912 887.32	887 888 16835 17078	Feb 887.09 887.32 Feb
Jan	887.00 16835	34 16869 887.14	887 888 16835 17078	Jan 887.00 887.14 Jan
Year 1 At Start of Month	Reservoir Water Level Reservoir Volume	Net Change in Volume (ac-ft) Reservoir Volume Approx. Reservoir Water Level	low elevation of interpolation high elevation of interpolation low storage of interpolation high storage of interpolation	III.D. Summary of Analysis first of month reservoir level end of month reservoir level

Jan Dec

ft, msl ft, msl

887.00 889.09

Minimum Reservoir Level During the Year Maximum Reservoir Level During the Year

Reservoir Management Study Water Balance Reservoir_Operation

VII. Minimum Required Total Reservoir Discharge for a "Very Wet Year"

What is the Minimum Total Reservoir Discharge Required to Maintain a Given Reservoir Level Over the Course of a Year

with More-Than-Above-Average Precipitation and Below-Average Evaporation?

THIS CASE IS THE BASIS FOR DESIGN OF THE IMPROVED SIPHON WITH THE EFFLUENT GRAVITY PIPELINE The probability that this amount of precipitation would occur is approximately ten (10) percent or less.

VI.A. Estimated Minimum Siphon Discharge and Discharge Volume

Probability of Exceedance is Number of Times Exceeded Since 1970

258.30 237.70 55.46 26.87 82.20 13.70 237.70 80.06 20.60 Trial & Error Solution: Assume a Reservoir Discharge Rate, compute resulting End-of-the-Year Reservoir Level, and compare to First-of-the-Year Reservoir Level. 255.20 55.46 26.87 79.55 13.26 230.03 230.03 80.06 25.17 manually input this value until the "End-of-the-Year Reservoir Level" 239.80 275.96 237.70 -36.16 73.48 47.55 22.87 82.20 13.70 This value must equal the "First-of-the-Year Reservoir Level" 285.96 230.03 -18.99 Sep **266.97** 84.18 60.54 29.44 79.55 13.26 AS OF 31 DEC OF THE PRECEDING YEAR Aug 322.51 102.00 83.48 41.12 82.20 13.70 324.87 237.70 -2.36 Assumed Starting Point for Analysis 363.30 115.43 101.57 50.39 82.20 13.70 348.64 237.70 110.94 14.66 330.56 295.75 230.03 35.81 79.55 13.26 94.05 73.08 100.52 -34.81 41.68 82.20 13.70 May 324.98 102.82 326.00 237.70 84.57 -1.02 Apr 286.88 300.45 230.03 91.03 69.20 33.84 79.55 13.26 -13.57ff, msl ff, msl ft, msl ft, msl mdg ac-ft ac-ft 887.19 887.00 230.03 308.59 77.35 37.99 82.20 13.70 237.70 70.88 16835 97.34 1735 887 887 Feb 215.46 68.00 41.17 19.67 74.25 12.37 214.70 214.70 Required NET Total Reservoir Discharge Capacity 0.00 92.0 Reservoir Volume at Assumed Reservoir Water Level Maximum Reservoir Level during the Year NORMAL RESERVOIR OPERATING LEVEL 212.22 35.93 17.05 82.20 13.70 237.70 237.70 -25.48 63.34 Average Monthly Discharged Volume First-of-the-Year Reservoir Level End-of-the-Year Reservoir Level IV.B. Mass Balance of Inflows and Outflows Ash Disposal Area (ac-ft) Net Change in Reservoir Outflows from Reservoir Slurry Disposal (ac-ft) Sediment Pond (ac-ft) Direct Rainfall (ac-ft) Upland Areas (ac-ft) Evaporation (ac-ft) nflows to Reservoir Siphon (Net, ac-ft) Volume (ac-ft) IV.A.2.a. IV.A.2.b. IV.A.3. IV.A.4 IV.B.2. IV.A.2 IV.B.1. IV.B. <u>∀</u>.

Reservoir Management Study Water Balance Reservoir_Operation

GAI Project 1999-170-45
by ALK-date
checked D.R.H. 12-6-02

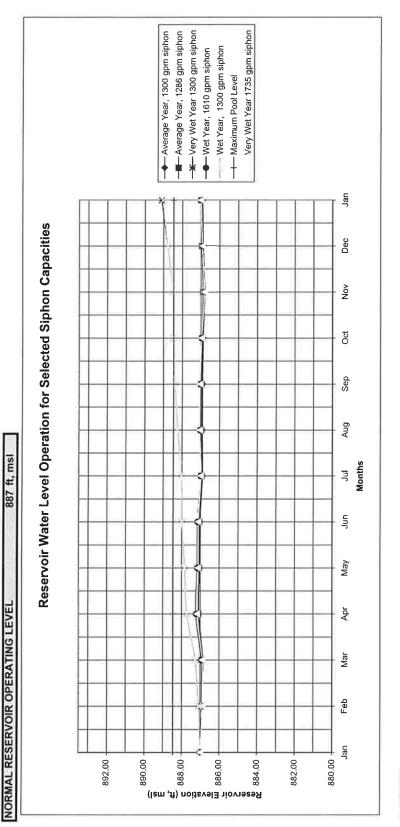
VII. Minimum Required Total Reservoir Discharge for THEN THE PREDICTED RESERVOIR LEVEL	Discharge fo RVOIR LEVE		et Year" ND OF EA(CH SUCCEI	a "Very Wet Year" AT THE END OF EACH SUCCEEDING MONTH WOULD BE AS GIVEN BELOW:	TH WOULE) BE AS GI	VEN BELO	:. :M:			
Year 1	Jan	Feb	Mar	Apr	May	Jun	JuC	Aug	Sep	Oct	Nov	Dec
At Start of Month												
Reservoir Water Level	887	886.89	886.90	887.19	887.13	887.13	886.99	887.05	887.04	886.96	886.81	886.91
Reservoir Volume	16,835	16,809	16,810	16,881	16,867	16,866	16,832	16,846	16,844	16,825	16,789	16,814
At End of Month												
Net Change in Volume (ac-ft)	-25	_	71	-14	-	-35	15	-5	-19	-36	22	2
Reservoir Volume	16,809	16,810	16,881	16,867	16,866	16,832	16,846	16,844	16,825	16,789	16,814	16,834
Approx. Reservoir Water Level	1 886.89	886.90	887.19	887.13	887.13	886.99	887.05	887.04	886.96	886.81	886.91	887.00
low elevation of interpolation	886	988	887	887	887	886	887	887	886	886	886	988
high elevation of interpolation	887	887	888	888	888	887	888	888	887	887	887	887
low storage of interpolation	16595	16595	16835	16835	16835	16595	16835	16835	16595	16595	16595	16595
high storage of interpolation	16835	16835	17078	17078	17078	16835	17078	17078	16835	16835	16835	16835
IV.C. Summary of Analysis												
	<u> </u>	H P P	N re	Anc	May	<u> </u>	Ę	Διισ	C O	ţ	Ž	Jec
first of month reservoir level	887.00	886.89	886.90	887.19	887.13	887.13	886.99	887.05	887.04	886.96	886.81	886.91
end of month reservoir level	886.89	886.90	887.19	887.13	887.13	886.99	887.05	887.04	886.96	886.81	886.91	887.00
	Jan	Feb	Mar	Apr	May	Jun	Jul	Ang	Sep	oct	Nov	Dec
Minimim Reconnir I aval During the Veer	Print O love	ho Voor	886.84	th me	lon							
Maximum Reservoir Level During the Year	Level During	the Year	887.19	ff, msl	Dec							

Reservoir Management Study Water Balance Reservoir_Operation

Allegheny Energy Pleasants Power Station McElroy's Run Disposal Facility

GAI Project 1999-170-45 by A.C. date ... checked DRH 12-6-02

IX. Evaluate Fluctuation of the Reservoir during the Course of the Year Analyzed Maximum Heights and Fluctuations of Reservoir Levels for Analyzed Conditions


Maximum Normal Pool Level in Reservoir Normal Operating Level in Reservoir	888.45 ft, msl 887.00 ft, msl		spreadsheet h&h.xls, worksheet reservoir_level.
Analyzed Condition	Total Reservoir Discharge (gpm)	Maximum Reservoir Level	Annual Fluctuation in Reservoir Level
Average Year	5	(ff, msl)	(#)
Current Siphon	1300	887.07	0.26
Minimum Required Reservoir Discharge Wet Year	1286	887.10	0.21
Current Siphon	1300	889.03	2.03
Minimum Required Reservoir Discharge	1610	887.22	0.43
Current Siphon	1300	889.09	2.09
Minimum Required Reservoir Discharge	1735	887.19	0.38

Reservoir Management Study Water Balance Reservoir_Operation

GAI Project 1999-170-45 by *k*⁴/- date . checked D/2 H 12-6--02

	Jan	Jan	Jan	Jan	Jan	Jan	Jan
	886.91	887.00	889.03	887.00	889.09	887.00	888.45
	Dec	Dec	Dec	Dec	Dec	Dec	Dec
	886.87	886.95	888.77	886.90	888.77	886.91	888.45
	Nov	Nov	Nov	Nov	Nov	Nov	Nov
	886.81	886.89	888.50	886.79	888.50	886.81	888.45
	Oct	Oct	Oct	Oct	Oct	Oct	Oct
	886.88	886.95	888.46	886.93	888.46	886.96	888.45
	Sep	Sep	Sep	Sep	Sep	Sep	Sep
	886.91	886.98	888.36	887.00	888.36	887.04	888.45
	Aug	Aug	Aug	Aug	Aug	Aug	Aug
	886.92	886.98	888.22	887.03	888.22	887.05	888.45
ge Rates	Jul	Jul	Jul	Jul	Jul	Jul	Jul
	886.90	886.95	888.01	886.99	888.01	886.99	888.45
d Dischar	Jun	Jun	Jun	Jun	Jun	Jun	Jun
	887.03	887.07	887.99	887.14	887.99	887.13	888.45
r Selectec	May	May	May	May	May	May	May
	887.04	887.07	887.84	887.16	887.84	887.13	888.45
rmance for	Apr 887.07	gpm siphon Apr 887.10	gpm siphon Apr 887.73	gpm siphon Apr 887.22	gpm siphon Apr 887.73	gpm siphon Apr 887.19	Apr 888.45
ion Perfo	Mar 886.87	1286 Mar 886.89	1300 Mar 887.27	1610 Mar 886.94	1300 Mar 887.27	1735 Mar 886.90	Mar 888.45
oir Elevat	Feb 886.90	ear, Feb 886.91	Feb 887.09	Feb 886.92	ear Feb 887.09	ear Feb 886.89	Pool Level Feb 888.45
X. Plot of Monthly Reservoir Elevation Performance for Selected Discharge Rates Average Year. 1300 gam sighon	Jan 887.00	Average Year, Jan F 887.00 88	Wet Year, Jan 887.00	Wet Year, Jan 887.00	Very Wet Year Jan 887.00	Very Wet Year Jan 887.00 88	Maximum Pool Level Jan Feb 888.45 888.45
Plot of Mon							
×							

Reservoir Management Study Water Balance Reservoir_Operation

Note: user must manually change custom footer to indicate Normal Operating Level of Reservoir,

APPENDIX C

CALCULATIONS FOR THE PROPOSED IMPROVED SIPHON EFFLUENT GRAVITY PIPELINE DESIGN

APPENDIX C

Table of Contents

Section 1	Siphon Layout and Geometry
Section 2	General Data
Section 3	Hydraulic Design Analyses for Proposed Effluent Gravity Pipeline
Section 4	Pressure and Water Hammer Analyses

I. Objective

Design of a Proposed Pipeline, to convey water from the Reservoir to the Ohio River. The pipeline is to operate as a siphon, similar to the existing siphon pipeline. The pipeline would incorporate the hdpe pipe portion of the existing siphon line, with a new hdpe pipe installed from the downstream end of the existing pipe to a new outfall at the Ohio River. The outfall segment of the pipeline would be ductile iron pipe. The discharge of the pipeline may be either to the Ohio River or to a treatment plant, depending upon technical feasilibility and regulatory acceptance. The pipeline would operate as a siphon to the treatment plant, if one is required.

II. Design Parameters & Constraints

The siphon must be capable of handling, at a minimum, the design discharge withdrawal rate that has been determined for maintenance of the reservoir water level with the desired operating range.

The piping must be capable of withstanding the anticipated internal and surge pressures, to include potential water hammer pressures.

It is desired that the new siphon pipeline be designed and constructed so as to be positivelydraining (no high or low spots in the line) except for the siphon crest. This may require passing surface drainage structures over or under the Proposed Pipeline, and/or the placement of fill over the pipeline for frost protection.

II. Geometry

Horizontal and vertical geometry of the Proposed New Siphon Pipeline is given on worksheet "geometry" of this spreadsheet file. The geometry is obtained from GAI Drawing 1999-170-51-F1003, dated 22 January 2002, by MAM. Revised 5 March 2002

III. Layout

Based on the geometry, alignment and the anticipated hydraulic features of the Proposed New Siphon Pipeline, a hydraulic schematic is developed, from which various hydraulic features of the pipeline can be identified and tabulated.

IV. Method of Analysis

The Energy Equation (Bernoulli Equation) is used to calculated headlosses in the proposed pipeline, and thereby estimate hydraulic capacity and pipe size. The Energy Equation is applied in a downstream direction, starting with the water level in the reservoir. The energy and hydraulic grade elevations at selected points along the pipeline are then computed. The hydraulic capacity of the pipeline is based on maintaining the hydraulic grade line above the crown of the pipeline, or above the river level, whichever is the more critical.

The hydraulic analysis is presented in worksheet "hyd_anal_*_*" in this spreadsheet file. "*" indicates either "des" (design) or "max" (maximum hydraulic capacity), and nominal pipe size "12" (12 inches) or "14" (14 inches).

V. Pipe Design

Based on the predicted hydraulic conditions, the class of pipe for the proposed pipeline is determined. Three conditions are analyzed. The first condition is when the valve is closed at the downstream end, and a static head exists in the pipeline. The second condition is when the pipeline is operating under design and under maximum flow conditions. The third condition is for waterhammer, assuming a valve is shut rapidly. The Class of pipe (SDR for hdpe, and pressure class for ductile iron) required to withstand the most critical of these conditions, if considered practical, is determined.

Under any scenario, controls should be placed on the rate at which flow control ("throttle") valves can operate, to reduce surge pressures and prevent water hammer.

Summary of Geometry Proposed Siphon Pipeline

Point	Description	Northing	Easting	Length of Pipeline	Statio	n I n g Ones	Length by	Ground Elevation	Invert Elevation	Computed Slope of
				between Points (ft)	(ft)	(ft)	Stationing (ft)	(ft, msl)	of pipe (ft, msl)	Pipeline (ft/ft)
0	intake in reservoir	319500	1466700	702.14	7 .66			881	877	0,0014
1	headwall connection at dam	319370	1466010	128.55				881	876	-0.0389
2	crest at siphon vault	319400	1465885		bill to			900	881	0.0152
3	Pigcatcher Road slope break	319540	1464840	1054.34 785.06				870	865	0.0152
4	Ash Haul Road slope break	319875	1464130					725	720	
5	PT-101 of new siphon route &	319891.82	1464068.01	64.23	0	0	54.00	718	715.80	0.0654
6	connection w/ extg line PT-102	319932.00	1464031.00	54.63	0	54.63	54.63	713	708.52	0.1333
7	PT-103	320084.88	1463808.00	270.37	3	25.00	270.37	662	656.82	0.1912
8	PT-104	320198.00	1463643.00	200.05	5	26.05	201.05	644	635.00	0.1091
9	PT-105	320047.84	1463501.42	206.38	7	31.44	205.39	641	632.52	0.0120
10	PT-106	319985.00	1463234.00	274.70	10	6.14	274.70	636	631.83	0.0025
11	PT-107	319959.11	1463101.51	135.00	11	41.14	135.00	637	631.50	0.0024
12	PT-108	319926.89	1463007.09	99.77	12	40.09	98.95	636	631.25	0.0025
13	PT-109	320125.37	1462419.46	620.24	18	61.15	621.06	626	629.70	0.0025
14	PT-110	320119.64	1462219.28	200.26	20	61.41	200.26	633	629.20	0.0025
15	PT-111	320318.44	1462241.05	199.99	22	61.39	199.98	636	628.70	0.0025
16	PT-112	320503.44	1462246.05	185.07	24	46.46	185.07	636	628.23	0.0025
17	Route 2 Xing PT-113	320623.44	1462174.05	139.94	25	86.40	139.94	634	627.88	0,0025
18	PT-114	320706.48	1462100.76	110.76	26	97.16	110.76	634	627.40	0.0043
19	PT-115	320841.48	1462245.76	198.12	28	95.27	198.11	632	626.90	0.0025
20	PT-116	320916.59	1462310.34	99.06		94.33	99.06	100	624.20	0.0273
		5.55 A	ATT IN THE	159.85	29		159.85	630		0.0025
21	PT-117	321025.40	1462427.44	672.10	31	54.18	672.10	627	623.80	0.0025
22	PT-118 (bend at Eureka Road)	321606.00	1462766.00	161.79	38	26.28	161.79	631	622.12	0.0025
23	PT-119	321766.00	1462742.00	309.16	39	88.07	309.15	631	621.72	0.0025
24	PT-120	322059.71	1462645.50	212.59	42	97.22	212.60	634	620.94	0.0025
25	PT-121	322259.29	1462572.27		45	9.82		635	620.41	0.2007
26	PT-122	322340.74	1462542.39	86.76	45	96.57	86.75	605	603.00	
27	outfall in Ohio River	322600.00	1462450.00	275.23	48	72	275.43	585	585	0.0654
	total length of pipeline			7,331						

Summary of Pipeline Layout Proposed Siphon Pipeline

Point	Description	Pipeline Segment	Type of Pipe (hdpe or duct, iron)	Length of Pipeline Segment (ft)	Entrance Condition	Exit Condition	# of Bends	# of Tees or Wyes	# of Shutoff Valves	# of Check Valves	# of Throttle Valves
0	intake in reservoir	1	hdpe	702.14	1	0	1	0	0	0	0
1	headwall connection at dam	1	hdpe	128.55	0	0	_ 1	0	0	0	0
2	crest at siphon vault	1	hdpe	1054.34	0	0	4	0	0	0	0
3	Pigcatcher Road slope break	1	hdpe	785.06	0	0	2 2 1	0	0	0	0
4	Ash Haul Road slope break	1	hdpe	64.23	0	0	1, 111	0	0	0	0
5	PT-101 of new siphon route & connection w/ extg line	2	hdpe	54.63	0	0	0	1	0	0	0
6	PT-102	2	hdpe	270.37	0	0	0	0	0	0	0
7	PT-103	2	hdpe	200.05	0	0	0	0	0	0	0
8	PT-104 PT-105	2	hdpe	206.38	0	0	1	0	0	0	0
9	PT-106	2	hdpe	274.70	0	0	0	0	0	0	0
11	PT-107	2	hdpe	135.00	0	0	0	0	0	0	0
12	PT-108	2	hdpe	99.77	0	0	1	0	0	0	0
13	PT-109	2	hdpe	620.24	0	0	1	0	0	0	0
14	PT-110	2	hdpe	200.26	0	0	1	0	0	0	0
15	PT-111	2	hdpe	199.99	0	0	0	0	0	0	0
16	PT-112	2	hdpe	185.07	0	0	1=	0	0	0	0
17	PT-113	2	hdpe	139.94	0	0	0	0	0	0	0
18	PT-114	2	hdpe	110.76	0	0	1	0	0	0	0
19	PT-115	2	hdpe hdpe	198.12 99.06	0	0	0	0	0	0	0
20	PT-116	2	hdpe	159.85	0	0	0	0	0	0	0
21	PT-117	2	hdpe	672.10	0	0	1	0	0	0	0
22	PT-118 (bend at Eureka Road)	2	hdpe	161.79	0	0	1	0	1	1	1
23	PT-119	2	hdpe	309.16	0	0	0	0	0	0	0
24	PT-120	2	hdpe	212.59	0	0	0	0	0	0	0
25	PT-121	2	hdpe	86.76	0	0	1	0	0	0	0
26	PT-122	3	duct. iron	275.23	0	1	1	0	0	0	0
27	outfall in Ohio River										
	subtotals				1	1	19	1	1	1	1

pipeline segment refers to (1)

hdpe pipe portion of existing siphon line

(2) (3)

hdpe pipe portion of proposed new siphon line

ductile iron pipe portion of proposed new siphon line

Headloss Coefficients for Pipeline, and various fittings

Sudden Ex	pansions										
A1/A2	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	8.0	0.9	1
k	1	0.81	0.64	0.49	0.36	0.25	0.16	0.09	0.04	0.01	0
k is applied	to the velo	city head fo	r the smalle	r diameter	of the pipes	(the A1 pip	e)	k v 1^2/2g			
						`	,	_ •			
For entrance	e of a pipe	into a reser	voir or man	hole, use		1					

0.48	0.45								
0.40	0.45	0.41	0.36	0.29	0.21	0.13	0.07	0.01	0
velocity head f	or the small	er diameter	of the nines	the A2 nin	ne)	k v 2^2/2a			
	velocity head f	velocity head for the smalle	velocity head for the smaller diameter	velocity head for the smaller diameter of the pipes	velocity head for the smaller diameter of the pipes (the A2 pip	velocity head for the smaller diameter of the pipes (the A2 pipe)	velocity head for the smaller diameter of the pipes (the A2 pipe) k v_2^2/2/2g	velocity head for the smaller diameter of the pipes (the A2 pipe) k v_2^2/2g	velocity head for the smaller diameter of the pipes (the A2 pipe) k v_2^2/2g

Conical Diffusers	1					Rouse, p. 421	
angle of cone	0	20	30	45	60		
k for D2/D1 = 1.5	0.2	0.4	0.7	1.05	1.2		
k for D2/D1 = 3	0.2	0.4	0.65	0.87	1.03		
k is applie	d to the squa	are of the d	ifference of	the two velo	ocities	k (v_1 - v_2)^2/2g	

Valves					Rouse, p. 421
Gate Valve					
% open	25	50	75	100	
k '	24	5.6	1.15	0.19	
Check Valve (S	Swing), fully	open		2.5	

Bends, 90 degrees		Rouse, p. 421
standard sweep	0.9	
medium-sweep	0.75	
long-sweep	0.6	

Ductile Iron Pipe

Nominal	Outside	Nominal TI	nickness an	d Inside Dia	ameter (inch	nes) for Selected Pressure Classes
Diameter	Diameter	PC = 350		PC = 300		
(inches)	(inches)	t (inch)	ID (inch)	t (inch)	ID (inch)	from DIPRA, "Ductile Iron Pipe"
3	3.96	0.25	3.46			
4	4.8	0.25	4.3	1	***	
6	6.9	0.25	6.4		200	
8	9.05	0.25	8.55		ent.	
10	11.1	0.26	10.58		****	
12	13.2	0.28	12.64			
14	15.3	0.31	14.68	0.3	14.7	
16	17.4	0.34	16.72	0.32	16.76	
18	19.5	0.36	18.78	0.34	18.82	
20	21.6	0.38	20.84	0.36	20.88	
24	25.8	0.43	24.94	0.4	25	
30	32	0.49	31.02	0.45	31.1	
36	38.3	0.56	37.18	0.51	37.28	
42	44.5	0.63	43.24	0.57	43.36	54
48	50.8	0.7	49.4	0.64	49.52	
54	57.56	0.79	55.98	0.72	56.12	
60	61.61	0.83	59.95	0.76	60.09	
64	65.67	0.87	63.93	0.8	64.07	

	100	1300	710	2010	1680	3800	2928	5565
	06	1173	629	1805	1531	3420	2755	2008
	∞	1055	609	1732	1333	3101	2524	4541
ė	20	948	549	1547	1202	2824	2273	4136
ırer literatur	09	810	482	1222	1034	2407	1773	3525
Red Valve Control Valve manufacturer literature	Travel) 50	653	363	1047	904	1923	1349	2816
Control Valv	otal 40	427	220	834	402	1418	983	2077
Red Valve ((% o 30	311	127	648	317	726	616	1063
¥	Opening 20	156	59.2	315	153	355	328	520
ر د ک	Valve 10	62	33.8	140	85.9	171	155	250
Flow Chai		9	9	8	∞	10	10	12
Cone Sleeve Flow Chart Cv	Valve Size Port Size	∞	10	10	12	12	14	14

Solution Procedure For Valve Sizing

ASSUME a pressure drop across the valve (psi) for each Flow Condition

Minimum Flow Condition	II		gbm
Design Flow Condition	II O	1700	gpm
Maximum Flow Condition	ш О		dbm

Calculate the Cv values for each flow condition

For a Control Valve whose Valve Size is equal to or smaller than the line size,

Find the Port Size whose Cv range encompasses the computed Cv values within 20% and 80% travel (manufacturer recommendation).

Calculate the Maximum Allowable Pressure Drop (psi)

Compare the Maximum Allowable Pressure Drop to the Assumed Pressure Drop.

If Assumed Pressure Drop is less than the Maximum Allowable Pressure Drop, then cavitation will not occur.

Calculate the Cv values for the Flow Conditions Cv = Q sqrt(G/dP)

flow in gpm of 60 degree water through the valve with 1 psi pressure drop, at a stated upstream pressure တ္တတ္ မွ

flow (gpm) specific gravity of fluid

drop in pressure across valve (psi)

S		537	643	1012
Ф	psi	2	7	10
Ø	gpm	1200	1700	3200

From the manufacturer's (Red Valve) literature, bracketing the above Cv values between 20% and 80% opening, 10 8 315 1732 the following Control Valve appears applicable. 59.2 609 The Range of Computed Cv values is Cv @ 20% Cv @ 80% Valve Size Port Size

Calculate the Maximum Allowable Pressure Drop

$$dP_allowable = FL^2*(P1 + 14.7 - rc*Pv)$$

Pressure Recovery Factor Inlet Pressure (psi) conversion factor from psig to psia Critical Pressure Ratio, = 0.94 Vapor Pressure at Flow Temperature ASSUME Temperature = 80 degrees F (to provide cushion against cavitation) 0.5 psi	10 x 6 Cone Sleeve Control Valve 0.7 10 x 8 Cone Sleeve Control Valve 0.6 34.13 ft Energy Grade Elevation - Invert of Pipe Elevation at Valve Location 15 psi 0.94 0.5 psi	dP_allowable = 14 10 because dP assumed > dP allowable, cavitation may result.
FL 14.7	<u> </u>	dP_al

Assume a less drop in pressure across the valve

The energy at any point in the system can be predicted using the Energy Equation (the general form of Bernoull's Equation), assuming sufficient information is known about the pipe and the flow conditions. For this analysis, it is assumed that the pipeline will flow full throughout its entire length. This assumption will be verified, and subsequent modifications will be made as appropriate.

For this analysis, a downstream approach is used. Starting with a known water level in the reservoir, the energy losses in the pipeline are then calculated. By comparing the resulting energy grade and hydraulic grade elevations with the pipeline profile, confirmation that the pipe does indeed flow full can be determined. If, at any point along the pipeline alignment, the hydraulic grade line dips below the crown of the pipe, then the pipe size may not be adequate to convey the flow, and a larger pipe size

If, for a Selected Pipe Size (Nominal Diameter) and Flow, the computed Hydraulic Grade Line is above the crown of the pipe everywhere along the pipe, and is above the ground elevation at Point 118, where the proposed Control Valve Vault is to be located, then the Selected Pipe Size will be considered to be adequate to convey the flow.

This Worksheet computes flow conditions for the Design Reservoir Withdrawal Discharge Rate, for a given Pipe Type and Size.
The cells indicated in PINK require USER INPUT for the selection of the Pipe Type, Size, and Class, and of the Flow.
The worksheet automatically the Inside diameter of HDPE pipe, given the provided information, for pipe of 10 inches Nominal Diameter or larger. Smaller pipe sizes result in a warning to the USER.
The inside diameter for ductile iron pipe is obtained from a lookup table in the Worksheet 'REF INFO'.

Pipe Segments "1" and "2" are reserved for HDPE pipe only. Pipe Segment "3" is reserved for Ductile Iron Pipe, General Design Data

	as of December 2001		
	ft, msl		ft, msl
	881.00		602.00 ft, msl
Scricial Design Data	Reservoir Water Level	Ohio River Water Level	Normal Pool Level

Pipe Design Data

The proposed pipeline is divided into three (3) segments, corresponding to (1) the hdpe pipe portion of the existing siphon line; and (3) the proposed new hdpe portion of the new siphon line; and (3) the proposed new ductile iron portion of the new siphon line.

	Segment 1	_	segment 2	2	segment 3
Type of Pipe	HDPE	as-built	HDPE	HDPE proposed	duct. iron Proposed
Pipe Size, Nominal (inches)	12	as-built	12	proposed	12 Proposed
SDR or Class	17	as-built	11	proposed	350 DIPRA info, ductile iron pipe
Inside Diameter of Pipe (inches)	11.250	calc, manufacturer info, Driscopipe	10.432		12.64 DIPRA info, ductile iron pipe, look up from worksheet "ref_info"
Design Flow (gpm)	1700	1700 reservoir design discharge	1700	reservoir design discharge	1700 reservoir design discharge
Full Flow Pipe Area (sq ft)	69'0	calc	0.59	calc	0.87 calc
Full Flow Velocity (fps)	5.49	calc	6.38	calc	4.35 calc
Dynamic Viscosity (ft^2/s)	0.000017	0.000017 water at 40 degrees F	0.000017	0.000017 water at 40 degrees F	0.000017 water at 40 degrees F
Reynold's Number RE	3.03E+05	calc	3,26E+05 ca/c	5 calc	2.69E+05 calc
pipe "k" factor	smooth	Rouse, Engineering Hydraulics, p. 405	smooth	smooth Rouse, Engineering Hydraulics, p. 405	1.20E-03 average for cast iron, Rouse, p.405
pipe "D/k" factor	smooth	smooth Rouse, Engineering Hydraulics, p. 405	smooth	smooth Rouse, Engineering Hydraulics, p. 405	878 calc
Darcy-Weisbach Friction Factor "f"	0.015	Rouse, Engineering Hydraulics, p. 405	0.015	Rouse, Engineering Hydraulics, p. 405	0.022 Rouse, Engineering Hydraulics, p. 405
Velocity Head (ft)	0.47	calc	0,63	Seco	0.29 calc

Rouse, Engineering Hydraulics, p. 405, provided as sheet 1a

Throttle Valve Design Data

The headloss for a throttle valve is dependent upon the "% open" setting of the vave and the valve's Cv value. Cv is a measurement of the valve's capacity to pass flow with a one (1) foot drop in pressure.

drop in pressure Cv = Q / sqrt(dP)For water, the equation for Cv is

the drop in pressure would represent the headloss that occurs through the valve at the setting indicated

The Cv values are obtained from manufacturer's literature.

For the tabulation below for Throttle Valve Headloss to function correctly, the User must specify pertinent data on the valve, to allow computation of the headloss through the valve, This information must be provided for the Worksheet to accurately predict headlosses through the piping system.

				dummy value, use only to set Cv below	GIVEN, from JLS (back calculated to get loss = 69,23 +/-)	
		inches		manufacturer's literature	manufacturer's literature	
DeZunk	pall	10	-	20	204	
Manufacturer of Valve	Type of Valve	Size of Valve	Number of Valves (in Series)	% Open Setting of Valve	Cv of valve for % Open Setting	

Point	Description	Dinolina		Fromv	anoth of	Fortion	1	Headheese							Total	Fnemv	Hydraulic	Invert	Crown	le Pine
5		Segment	pipe	Head (ft)	Pipeline	Gradient		Entrance	Bends	Tees	Shutoff	Throttle	Check	Exit	SS	_	_	-	_	Adequate
)			Segment	(ft/ft)	Friction (ft)				Valves	Valves	Valves		_	50	-	_	_	to Pass Flow (y/n)
0	intake in reservoir			881.00												881.00	880.53	877		yes
-	headwall connection at dam	-	hdpe	875.09	702.14	0.007481	5.25	0.23	0,42	00'0	0 0	00"0	00'0	000	5.0	875,09	874.63	928	877.00	ou Ou
2	crest at siphon vault	-	hdpe	873,71	128.55	0.007481	96 0	00 0	0,42	000	00.0	00 0	00'0	000	1,38	873,71	873.24	881	882.00	0
m	Pigcatcher Road slope break	-	hdpe	864.14	1054,34	0.007481	7.89	00.0	1.68	000	00.0	00 0	00.0	000	9.57	864.14	863.67	865	866.00	00
4	Ash Haul Road slope break		hdpe hdbe	857.85	785.06	0.007481	5.87	0000	0,42	00.0	00 0	00 0	00 0	00 0	0.90	857.85	857,38	720	721.00	yes
5	PT-101 of new siphon route &	,	dobd	856.94	54.63	010010	0.60	00.0	000	0.57	9	900	000	90	1.17	856.94	856.31	715.8	716.80	yes
9	PT-102	۷ (nd n	855,78	3 5	7 6000		8	8)		9	8 6	8 6	- L	855.78	855,15	708.52	709.52	yes
7	PT-103	61	hdpe	852.83	270,37	0.010912	2,95	00 0	00	000	000	000	00.0	00.0	2.35	852.83	852,20	656.82	657.82	yes
æ	PT-104	2	hdpe	850,65	200.05	0.010912	2.18	00.00	00.0	00.00	00.00	00.0	00.0	00.0	2 18	850.65	850.01	635	636.00	sex
6	PT-105	2	hdpe	847,82	206.38	0.010912	2,25	00'0	0.57	00.00	00"0	00.00	00.0	00.0	2.82	847.82	847,19	632.52	633.52	yes
10	PT-106	7	hdpe	844.26	274,70	0.010912	3.00	00.00	0.57	00.0	0.00	00'0	0.00	00.0	3.57	844.26	843,62	631.83	632,83	yes
;	PT-107	2	hdpe	842.78	135,00	0.010912	1,47	00'0	00.00	00.00	00.0	00.00	00'0	00"0	1,47	842.78	842,15	631.5	632.50	ves
	PT-108	2	hdpe	841 70	22.66	0.010912	1 09	00.00	00.00	00'0	00 0	00 0	00'0	00.0	1.09	841 70	841 06	631.25	632.25	, NAV
i	T-109	2	hdpe	34 26	620 24	0.010912	6,77	00'0	0,57	00.0	00 0	00.0	00.00	00.00	7.34	834.36	833.73	629.7	630 70	20 40
2 ;	001-1	2	hdpe	000	200,26	0.010912	2,19	00.00	0,57	00.0	00.0	00.0	00'0	00"0	2,75	200		000	00000	3
4 i	01-110	7	hdpe	831.60	199,99	0.010912	2.18	00.00	0,57	00"0	00"0	00.00	0.00	00.00	2.75	831.60	930.97	7 670	02,050	yes
c C	רני-	7	hdpe	828.85	185.07	0.010912	2,02	00.00	00'0	00"0	00.0	00"0	00'0	00"0	2.02	828 83	979.77	020,1	07.670	yes
16	PT-112		hdne	826.83	139.94	0.010912	153	00	0.57	0.00	0.00	000	000	0.00	2.10	826.83	826.20	62823	629.23	yes
17	PT-113	1 0		824.74	110.76	0.0010	2 5			8 0	8 6	000		000	124	824.74	824.10	627,88	628,88	yes
18	PT-114	4	200	823.53		7	- 0		2 !	8					1 1	823.53	822.89	627.4	628,40	yes
19	PT-115	64	hdpe	820.80	198,12	0.010912	2.16	0.00	0.57	0000	00.00	00.00	00.0	0.00	2,73	820 80	820.16	626.9	627.90	yes
50	PT-116	2	hdpe	819.72	90.66	0.010912	1.08	00.0	00.00	00.00	00.0	00.00	00.0	00.00	1.08	819.72	819,08	624.2	625,20	yes
21	PT-117	7	hdpe	817.97	159,85	0.010912	1.74	00'0	00.0	00.0	00.0	00.00	00''0	00.00	1,74	817.97	817.34	623,8	624.80	yes
22	PT-118 (bend at Eureka Road)	7	hdpe	810.07	672,10	0.010912	7,33	00'0	0.57	00.00	00.00	0.00	00.00	00.00	7.90	810.07	809.43	622,12	623.12	ves
1 8	PT 440	2	hdpe	797 00	161.79	0.010912	1,77	00:00	0.57	00.00	0.12	69.44	1:17	00.00	73.07	737 00	736 37	621 72	622 73	3 0
3 3	D C C C C C C C C C C C C C C C C C C C	2	hdpe	00.101	309.16	0.010912	3,37	00'0	00 0	00 0	00'0	00.0	00'0	00.00	3.37	722 63	200	620.04	621 04	200
5 5	021-14	2	hdpe	20.00	212.59	0.010912	2.32	00.00	00"0	00.00	00.00	0.00	00.00	00.00	2.32	2000	132.33	16.020	10 70	S D
22	121-121	2	hdpe	15,15)	96.76	0.010912	0,95	00'0	0,57	00.00	00.00	00.00	00'0	00.0	1,52	13.13.	/30,05/	14 070	14 170	ses
52 50	P1-122	ო	duct, iron	727.55	275.23	0.006128	1 69	00.0	0,26	00.00	00.0	00.0	0.00	0.29	2.24	727.55	727.25	585	602.00	yes
17	10000 0000 1000000			00.131												2017				
	subtotal, headloss to Proposed Control Valve Vault	ol Valve Vau					62.21	0.23	7.92	0.57	00.00	000	000	000	20.93					

subtotal, headloss to Ohlo River

72,30 0,23 9,32 0,57 0,12 69,44 1,17

The energy at any point in the system can be predicted using the Energy Equation (the general form of Bernoulli's Equation), assuming sufficient information is known about the pipe and the flow conditions. For this analysis, it is assumed that the pipeline will flow full throughout its entire length. This assumption will be verified, and subsequent modifications will be made as appropriate.

For this analysis, a downstream approach is used. Starting with a known water level in the reservoir, the energy losses in the pipeline are then calculated. By comparing the resulting energy grade and hydraulic grade elevations with the pipeline alignment, the hydraulic grade line dips below the crown of the pipe, then the pipe size may not be adequate to convey the flow, and a larger pipe size confirmation that the pipe does indeed flow full can be determined. If, at any point along the pipeline alignment, the hydraulic grade line dips below the crown of the pipe, then the pipe are adequate to convey the flow, and a larger pipe size

If, for a Selected Pipe Size (Nominal Diameter) and Flow, the computed Hydraulic Grade Line is above the crown of the pipe everywhere along the pipe, and is above the ground elevation at Point 118, where the proposed Control Valve Vault is to be located, then the Selected Pipe Size will be considered to be adequate to convey the flow.

This Worksheet computes flow conditions for the Design Reservoir Withdrawal Discharge Rate, for a given Pipe Type and Size,
the cells indicated in PNIX require USER INDIVIT for the selection of the Pipe Type, Sixe, and Class, and of the Flow.
The worksheet automaticity calculates the inside dameter of PIDEP pipe, given the provided information, for pipe of 10 inches Nominal Diameter or larger. Smaller pipe sizes result in a warning to the USER.
The inside diameter for ductile iron pipe is obtained from a lookup table in the Worksheet "REF_INFO".

Pipe Segments "1" and "2" are reserved for HDPE pipe only. Pipe Segment "3" is reserved for Ductile Iron Pipe,

881 ft, msl 602 ft, msl Reservoir Water Level Ohio River Water Level General Design Data

as of December 2001

Pipe Design Data

The proposed pipeline is divided into three (3) segments, corresponding to (1) the hdpe pipe portion of the existing siphon line; (2) the proposed new hdpe portion of the new siphon line, and (3) the proposed new ductile iron portion of the new siphon line.

	Segment 1		Segment 2		segment 3	
Type of Pipe	HDPE	HDPE as-built	HDPE	HDPE proposed	duct. iron	duct. iron Proposed
Pipe Size, Nominal (inches)	12	as-built	12	pesodoud	12	Proposed
SDR or Class	17	as-built	7	proposed	350	DIPRA info, ductile iron pipe
Inside Diameter of Pipe (inches)	11.250	11.250 calc, manufacturer info, Driscopipe	10.432	calc	12.64	DIPRA info, ductile iron pipe, look up fi
Design Flow (gpm)	3213	3213 maximum reservoir withdrawal discharge	3213	3213 maximum reservoir withdrawal discharge	3213	3213 reservoir design discharge
Full Flow Pipe Area (sq ft)	0.69	calc	0.59	calc	0.87	calc
Full Flow Velocity (fps)	10.37 calc	calc	12.06 calc	calc	8.22 calc	calc
Dynamic Viscosity (ft^2/s)	0.000017	.000017 water at 40 degrees F	0.000017	0.000017 water at 40 degrees F	0.000017	0.000017 water at 40 degrees F
Reynold's Number RE	5.72E+05 calc	calc	6.17E+05 calc	calc	5.09E+05 calc	catc
pipe "k" factor	smooth	smooth Rouse, Engineering Hydraulics, p. 405	smooth	smooth Rouse, Engineering Hydraulics, p. 405	0.0012	0.0012 average for cast iron, Rouse, p.405
pipe "D/k" factor	smooth	smooth Rouse, Engineering Hydraulics, p. 405	smooth	smooth Rouse, Engineering Hydraulics, p. 405	878	calc
Darcy-Weisbach Friction Factor "f"	0.013	0.013 Rouse, Engineering Hydraulics, p. 405	0.013	0.013 Rouse, Engineering Hydraulics, p. 405	0.021	Rouse, Engineering Hydraulics, p. 405
Velocity Head (ft)	1.67	calc	2.26	calc	1.05	calc

from worksheet "ref_info"

Throttle Valve Design Data

The headloss for a throttle valve is dependent upon the "% open" setting of the vave and the valve's Cv value. Cv is a measurement of the valve's capacity to pass flow with a one (1) foot drop in pressure. For water, the equation for Cv is $Cv = Q \cdot sqrt(dP)$ fow

dP drop in pressure the drop in pressure would represent the headloss that occurs through the valve at the setting indicated.

The Cv values are obtained from manufacturer's literature,

For the tabulation below for Throttle Valve Headloss to function correctly, the User must specify pertinent data on the valve, to allow computation of the headloss through the valve. This information must be provided for the Worksheet to accurately predict headlosses through the piping system.

manufacturer's literature manufacturer's literature inches 100 100 1972 Number of Valves (in Series) % Open Setting of Valve Cv of valve for % Open Setting Manufacturer of Valve Type of Valve Size of Valve

GIVEN, from JLS (back calculated to get 2.31 ft of headloss)

T.	a c				_	_	1						_									_										7
-	Adequate to Pass Flow (y/n)	yes	91	ОП	2	yes		yes	30%	3	S	yes	yes	yes	yes	yes	307	2	yes	yes	yes	yes	yes	yes	yes	yes	ves	, on	2	yes	yes	yes
Crown	Elevation of Pipe (ft, msl)	878.00	877.00	882.00	966.00	721,00		716.80	657.82	20.00	030 000	933.52	632.83	632.50	632,25	630.70	630.20	2000	07.829	629.23	628.88	628,40	627.90	625,20	624,80	623.12	622.72	621 94	20 0	021.41	586 00	200.000
Invert	Elevation of Pipe (ft, msl)	877	876	881	865	720		715.8	656.82	2000	650	032.32	631.83	631.5	631,25	629.7	620.2	1 1	1,829	628.23	627.88	627,4	626.9	624,2	623.8	622.12	621.72	620.94	1000	020.41	603 585	200
Hydraulic	Grade Elevation (ft, msl)	879.33	860,73	856,25	825,82	806,13		802,55	780 54		07,207	113.78	762.46	757,90	754.53	731,55	723.75		08.517	17.707	700.94	697,20	688.48	685.13	679.73	654.99	639.19	628.75	2 2 2	00.120	610.07	201010
	Head Elevation (ft, msl)	881.00	862.40	857.92	827.49	807.80		804.81	701.80		720.04	1/0.04	764.72	760,16	756.79	733,80	725.01		/16.22	96'602	703.20	699,46	690.74	687.39	681.99	657.25	641.45	631.00	8 8	20.820	618.86	011:12
Total	Headloss (ft)		18,60	4,48	30.43	19.69	2.99	3.88	9,13	92.9	9,01	11,31	4 56	20 6	70.0	22.99	8.80	8.79	6.25	6.76	2.74	r o	8.73	5	5,40	24.74	15.80	10.44	7.18	96 4	7.74	
П	Exit		000	00.00	00.0	00.0	0.00	00.00	00.00	0.00	00.00	00.00	000	3 6	0	00.00	00.00	00.00	0.00	0.00	2	3	0000	0000	000	00.00	00"0	00.00	00"0	00'0	1.05	T
	Check Valves		00.00	00.00	00.0	0000	00.0	00'0	00 0	00.00	00'0	00.00	0	8 8	8	00.00	0.00	00.0	0.00	00.00		9	0000	00.0	00.0	00.0	5.65	00.0	00'0	00'0	00:00	1
1 }	Throttle (Valves		0.00	00'0	00.00	00'0	0.00	00.00	00.0	00.00	00.00	00.00	000		8	00:00	00.00	00.0	0.00	0.00			000	000	000	00.0	2.65	00.0	00''0	00'0	00.00	1
H	Shutoff T Valves		00.0	00.0	000	00.00	00.0	0.00	000	00.00	00.00	00.00	000	8 8	000	00.00	00.00	00.00	0.00	0.00	9	9	0.00	00.00	00.0	0.00	00'0	00.00	00'0	00'0	0.00	
	ses >				00.0	8	000	2.03	00.0	00.0	00.00	00.00	00.0		000	0.00	00.00	0000	0.00	00.0	- 8	3	000	000	000	00.0	00.00	00.00	00''0	00.00	0.00	
	Bends				6,01		1.50	00.00	00.0	00.0	2.03	2.03	00.0			2.03	2.03	2.03	0.00	_						2,03	2.03	0000	00.00	2.03	0.94	1
95	Entrance			_	00.00		00.00	0.00	00'0	00.00	00:00	00.00	00.0	-		00.00	00.00	00.0	00.0		_					00.0	00.0	00.00	00.0	00.0	0.00	
1	Pipe Ent Friction		16.26	_	24.42 0		1.49	1.85	9.13	6.76	0 26.9	9.28	4 56		_	20.95	6,77	6.76	6.25	_	_					22.71 (5.47 (10.44	7.18	2,93	5.75	-
\vdash	Gradient P (ft/ft) Fri				0.02316 24		0.02316 1	0.033783	0,033783 9	0.033783 6	0,033783 6	0,033783	0.033783		_		0.033783 6	0.033783 6	0.033783 6								0,033783 5	0.033783	0.033783	0.033783	0.020895	
-	Pipeline Gra Segment (f		702.14 0.0	_	0.054.34 0.0	90"	53	54.63 0.03	270,37 0,03	200.05 0.03	206.38 0.03	274.70 0.03	135.00			620.24 0.03	200.26 0.03	0.0	185.07 0.03							672.10 0.03	161.79 0.03	309.16 0.03	212.59 0.0:	86.76 0.03	275.23 0.0;	
Energy Leng		881.00	862.40	857.92	827.49	_	₹ 8		_			_	764.72	760,16	756.79	733.80		_	716.22		703.20	699.46	690.74	687.39	681.99	657.25			-		618.86	1717
\vdash				_	-		+	_		_		_	-		_	_				_	_		_				hdpe 64.		hdpe	_		0
ne type of			hdpe	hdpe	hdpe	hdpe	hdbe	hdpe	hdpe	hdpe	hdpe	hdpe	- Pd		ed bi	hdpe	hdpe	hdpe	hdbe	hdpe			hdpe	hdpe	hdpe	hdpe	Pi Pi	hdpe	2	hdpe	duct. iron	-
Pipeline	Segme		_	-	_	-	-	71	71	7	2	2	0	1 0	7	7	2	7	2	2	c	7	0 0	N (N	7	7	2	2	2	က	-
Description		intake in reservoir	headwall connection at dam	crest at siphon vault	Pigcatcher Road slope break	Ash Hauf Road slope break		PT-101 of new siphon route & connection w/ extg line PT-102	DT-103	201	P1-104	501-12	PT-106	PT-107	PT-108	PT-109	017710			PT-112	PT-113	PT-114	PT-115	PT-116	PT-117	PT-118 (bend at Eureka Road)	PT-119	PT-120	707 11	121-121	PT-122	Outail in Onio River
Point		0	-	2	т	4		യ വ) h	- 0	0 (מ	10	=	12	55	7	: ;	<u>ი</u>	16	17	18	19	50	12	22	23	24	, i	6 8	26	17
_													_											_	_						_	_

Objective: Determine the potential for waterhammer and/or surge, and design measures to mitigate or minimize adverse effects.

Surge occurs in a pipeline whenever a change in the momentum and inertia occurs. Waterhammer is a surge that occurs due to a sudden change in these parameters.

Maximum surge pressures (waterhammer) would occur when

valve closure time <= 2 x length of pipeline / speed of the pressure wave

of $tv \le 2L/s$

s is dependent upon properties of the fluid and the pipe

s = 12 * sqrt((K*E)/((w/g)*(E+(K*DR)))

s speed of the pressure wave (fps) K bulk modulus of the liquid (psi)

E Modulus of Elasticity of pipe material (psi)

DR Dimenson Ratio

w unit weight of the fluid (pcf) g acceleration constant (f/s^2)

32.2 f/s^2)

The excess pressure realized during a rapid valve closure is

dP = w s dv / 144 g

dP change in pressure (psi)

dv change in velocity (fps) that occurs during the critical time 2 L / s

For the application at hand,

Consider the siphon is operating at its design flow and at its predicted maximum hydraulic capacity

Q =	1700	gpm	design flow, worksheet "hyd_anal_des_12"
Q =	3213	gpm	maximum hydraulic capacity, worksheet "hyd_anal_max_12"
K =	300,000	psi	water
E =	100,000	psi	hdpe, short term stress
DR =	17		max SDR of the siphon pipe, worksheet "hyd_anal_des_12"
w =	62.4	pcf	water
L =	7331	ft	worksheet "geometry"
v =	5.49	fps	design flow, worksheet "hyd_anal_des_12"
v =	10.37	fps	maximum hydraulic capacity, worksheet "hyd_anal_max_12"
s =	655	fps	speed of the pressure wave through the pipe
			s is independent of the flow rate
tv =	22	seconds	tv is independent of the flow rate

The maximum value of dv is when the fluid is brought to a standstill by the valve closing, such that

dv	=	5.49	fps	design flow conditions, when the fluid is brought to a standstill
dv	=	10.37	fps	maximum hydraulic capacity conditions, fluid is brought to a standstill
and therefore		10.01	.,,,	Than the state of
dP	=	48	psi	waterhammer pressure, design flow conditions
dP	=	91	psi	waterhammer pressure, maximum hydraulic capacity conditions

Therefore, the occurrence of waterhammer could add

48 psi design flow conditions

91 psi maximum hydraulic capacity conditions rating required for the pipe.

									VLOOKUP table columns		PT-101 of new siphon route &	connection w/ extg line	100 Tu	2011	PT-104	PT-105	PT-106	PT-107	PT-108	PT-109	PT-110	PT-111	PT-112	PT-113	PT-114	PT-115	PT-116	PT-117	
							_		VLOOKU		s.	Œ	- 1		60	6	10	£	12	13	4	15	16	17	18	19	20	21	
							Procedure	% of	Pressure		133	133	000	071	125	126	128	129	130	134	136	138	139	140	141	143	143	144	
							Recommended Test Procedure	Test Pressure	to 150% of	Operating Pressure at Lowest Point	on Line 81.6	80	407.4		116.6	117.7	118.0	118.1	118.2	118.9	119.1	119.3	119.5	119.7	119.9	120.1	121.3	121,4	
								Is the Test	_	Pressure Rating?	Š	č	ò	ś	ÖK	Š	δ	ð	Ä	ě	Š) N	NO.	ò) N	Š	ð	Α	
								% of	Pressure		172	170	15,	<u> </u>	150	151	154	155	155	161	163	165	166	168	169	171	171	172	
DSI	bsi		ft, msl	523	ft, msl Road)	psi		Test Pressure	to a Minimum of	150% of Operating Pressure at	105.2	108.3	130.7		140,2	141.2	141.5	141.7	141.8	142.5	142.7	142.9	143.1	143.3	143,5	143.7	144.8	145.0	
160		PT-104		l	ureka	81.4 122.2		Is 150% of	Pressure Less	Than Pipe's Pressure Rating?	OK	ŏ	č	Ś	OK	ŏ	OK	ŏ	ŏ	ŏ	ŏ	ŏ	ě	ŏ	ŏ	Ą	ŏ	ð	
					PT-1	Eureka Road) Eureka Road)		Invert	of pipe	(ft, msl)	715.80	708.52	656.82	20.000	635.00	632,52	631,83	631.50	631.25	629.70	629.20	628.70	628.23	627.88	627.40	626.90	624.20	623,80	
1								150% of	Pressure	(psi)	51.7	95.7	127.4	1	140.2	139.9	138,1	137.3	136.8	133.0	131.6	130,1	129.1	128.0	127.5	126,0	127.1	126.2	
neter DR 1	Line	ressure	PT-104	101-11	ine on) Point of	PT-118 (bend at PT-118 (bend at		Operating		(jsd)	61.2	63.8	94.9	?	93.4	93,3	92.1	91,6	91,2	88.7	87.7	2.98	1,98	85,3	85,0	84.0	84.7	84.1	
Pressure Rating of Pipe (12" Diameter DR 11)	Maximum Operating Pressure in Line	Location with Highest Operating Pressure	Pipe Invert Elevation at	Sold Spring 1 1000 M	at a	Operating Pressure in Line at 150% Operating Pressure at		Description (Honer Sinhon Pipeline)			PT-101 of new siphon route &	connection w/ extg line PT-102	PT-103		PT-104	PT-105	PT-106	PT-107	PT-108	PT-109	PT-110	PT-111	PT-112	PT-113	PT-114	PT-115	PT-116	PT-117	
								Point			5	9	7		8	6	10	=	12	13	14	15	16	17	18	19	20	21	

Determine What Class of Pipe is Required for the New Siphon Line

267 200 manufacturer literature on DRISCOPIPE, 1000 Series 1100 128 13.5 13.5 80 21 17 881.00 ft, mst 602.00 ft, mst 279 ft 121 psi 51 32 5 26 Reservoir Water Level
Ohi River Water Level
Normal Pool Level
Maximum Static Flead in Pipe
Maximum Static Pressure in Pipe
Conversion Factor REFERENCE psi rating DR of pipe

267

1 cf of water weighs 62.4 lbs 1 cf of water per sq in = 0.433 psi

neglecting losses neglecting losses

Point	Description	Invert									-			-				
		Elevation of pipe (fl, msl)	Static Pressure in Pipe	Static Pressure in Pipe (psi)	Energy Head Elevation (fl. msl)	Operating Pressure Head in Pipe (ft)	Operating Pressure in Pipe (ppl)	Water Hammer Pressure (psi)	Maximum Pressure in Pipe (psi)	Controlling Condition in Pipe	Minimum DR Rating of Pipe	Energy Head Elevation (ft. msl)	Operating Pressure Head in Pipe (ft)	Operating Pressure in Pipe (psi)	Water Hammer Pressure (psi)	Maximum Pressure in Pipe (psi)	Controlling Condition in Pipe	Minimum DR Rating of Pipe
٥	intake in reservoir	877.00	4,00	2	861.00	4 00	0	48	48	Waternammer	32.5	881.00	4 00	0	16	6	Waterhammer	17
-	headwall connection at dam	876.00	2 00	2	875,09	-0.91	0	48	84	Waterhammer	32.5	862,40	-13 60	φ	94	8	Waternammer	17
8	crest at siphon vault	881,00	00 0	0	873,71	-7.29	ņ	48	45	Waterhammer	32.5	857,92	-23 08	10	91	19	Waterhammer	17
m	Pigcalcher Road slope break	965.00	16.00	7	864.14	98 0-	0	48	48	Waterhammer	32.5	827,49	-37,51	-16	91	75	Waterhammer	21
4	Ash Haul Road slope break	720,00	161,00	70	857,85	137,85	90	48	108	Waterhamme	13.5	907,80	87,80	38	9	129	Waterhammer	Έ
Ŋ	PT-101 of new siphon route &	715.80	165,20	72	856.94	141,14	61	48	110	Waterhammer	13.5	804.81	89.01	39	91	130	Waterhammer	Ξ
9	PT-102	708.52	172.48	75	855.78	147.26	2	48	112	Waterhammer	13.5	800 93	92,41	40	16	131	Waterhammer	Ξ
7	PT-103	656.82	224 18	46	852,83	196.01	85	48	133	Waterhammer	F	791,80	134.98	25	91	150	Waterhammer	Ξ
60	PT-104	635 00	246,00	107	850,65	215,65	83	48	142	waternammer	ŧ	785,04	150 04	65	91	156	Waterhammer	£
on	PT-105	632 52	248 48	108	847,82	215.30	8	48	142	Waterhammer	F	776.04	143 52	62	16	<u>\$</u>	Waternammer	£
10	PT-106	631.83	249 17	108	844.26	212 43	35	48	140	waterhammer	Ξ	764 72	132 89	58	16	149	Waterhammer	Ξ
Ξ	PT-107	631,50	249.50	108	842,78	211.28	25	48	140	Waterhammer	Ξ	760.16	128.66	98	6	147	Waterhammer	Ξ
12	PT-108	631.25	249.75	108	841,70	210.45	29	48	140	waternammer	Ξ	756,79	125,54	33	9	146	waterhammer	1
13	PT-109	629.70	251.30	109	834.36	204.66	88	48	137	Waterhammer	Ξ	733 80	104,10	45	9	136	Waterhammer	7
4	PT-110	629.20	251.80	109	831,60	202 40	88	48	136	Waterhammer	Ξ	725.01	95.81	42	16	133	vyatemannier	=======================================
5	PT-111	628,70	252.30	109	828,85	200 15	87	48	135	Waterhammer	Ξ	716,22	87.52	38	16	129	Waterhammer	Ξ
16	PT-112	62823	252.77	110	826,83	198 60	8	48	134	Waterhammer	Ξ	96 602	81,73	35	16	127	Waterhammer	13.5
17	PT-113	627.88	253 12	110	824,74	196.86	85	48	134	Waterhammer	£	703 20	75,32	33	16	124	Waterhammer	13.5
18	PT-114	627.40	253 60	110	823,53	196.13	28	84	133	Waterhammer	£	699 46	72.06	31	16	123	Waterhammer	13.5
19	PT-115	626,90	254.10	110	820,80	193,90	28	48	132	Walerhammer	Ξ	690.74	63.84	28	91	119	Walerhammer	13.5
20	PT-116	624 20	256 80	111	819.72	195,52	985	48	133	Waterhammer	Ε	687.39	63,19	27	16	119	Walerhammer	13.5
21	PT-117	623,80	257.20	111	817,97	194 17	28	48	132	Waterhammer	÷	681.99	58 19	25	91	117	Waterhammer	13.5
22	PT-118 (bend at Eureka Road)	622,12	258.88	112	810,07	187.95	19	46	130	Waterhammer	Ξ	657,25	35.13	15	91	107	Static	13.5
23	PT-119	621.72	259.28	112	737.00	115.28	20	48	112	Static	13.5	641 45	19.73	a	91	100	Static	17
54	PT-120	620,94	260,06	113	733,63	112,69	49	48	113	Static	13.5	631,00	10.06	4	91	8	Static	17
25	PT-121	620.41	260.59	113	731,31	110,90	48	48	113	Static	13.5	623.82	3,41	-	91	66	Static	17
26	PT-122	603,00	278.00	120	729,79	126,79	35	48	120	Static	13.5	618.86	15.86	7	91	86	Static	17
	MAXIMUM PRESSURE IN PIPE			120			80		142							189		