2021 ANNUAL CCR RULE GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

COAL COMBUSTION BYPRODUCT LANDFILL

Ft. Martin Power Station Monongalia County, West Virginia

Prepared for:

FirstEnergy

800 Cabin Hill Drive Greensburg, PA 15601

Prepared by:

Tetra Tech, Inc.

400 Penn Center Boulevard, Suite 200 Pittsburgh, PA 15235 Phone: (412) 829-3600 Fax: (412) 829-3260

Tetra Tech Project No. 212C-SW-00068

January 2022

2021 ANNUAL CCR RULE GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

COAL COMBUSTION BYPRODUCT LANDFILL

FT. MARTIN POWER STATION MONONGALIA COUNTY, WEST VIRGINIA

Prepared for:

FirstEnergy

800 Cabin Hill Drive Greensburg, PA 15601

Prepared by:

Tetra Tech, Inc. 400 Penn Center Boulevard, Suite 200 Pittsburgh, PA 15235 Phone: (412) 829-3600 Fax: (412) 829-3260

Tetra Tech Project No. 212C-SW-00068

January 2022

TABLE OF CONTENTS

1.0 INTRODUCTION	1-1
1.1 Background and Site Characteristics	1-1
1.2 Regulatory Basis	1-2
1.3 Overview of Report Contents	1-4
2.0 GENERAL INFORMATION	2-1
2.1 Status of The CCR Groundwater Monitoring And Corrective Action Program	2-1
2.1.1 Groundwater Monitoring Well System	2-1
2.1.2 Groundwater Monitoring Plan	2-1
2.1.3 Background Groundwater Sampling	2-2
2.1.4 Statistical Methods	2-2
2.2 Problems Encountered/Resolved	2-2
2.3 Transition Between Monitoring Programs	2-2
2.4 Key Activities Planned For The Upcoming Year	2-3
3.0 DETECTION MONITORING INFORMATION	3-1
3.1 Groundwater Analytical Results Summary	3-1
4.0 ASSESSMENT MONITORING INFORMATION	4-1
4.1 Groundwater Analytical Results Summary	4-1

TABLES

- 2-1 CCR Rule Groundwater Monitoring System Well Summary
- 3-1 CCR Rule 2021 Groundwater Assessment Monitoring Analytical Results Summary
- 4-1a CCR Rule Interwell Comparison of Sampling Events AM-7 and -8 Appendix IV Data (Original Landfill Connellsville Sandstone)
- 4-1b CCR Rule Interwell Comparison of Sampling Events AM-7 and -8 Appendix IV Data (Original Landfill Clarksburg Formation)
- 4-2 CCR Rule Interwell Comparison of Sampling Events AM-7 and -8 Appendix IV Data (Expansion Area Landfill)
- 4-3 CCR Rule Interwell Comparison of Sampling Events AM-7 and -8 Appendix IV Data (Both Landfills Perimeter Wells)

FIGURES

- 2-1 CCR Rule Groundwater Monitoring System Interpreted Groundwater Flow January 2021
- 2-2 CCR Rule Groundwater Monitoring System Interpreted Groundwater Flow August 2021

1.0 INTRODUCTION

This 2021 Annual Coal Combustion Residuals (CCR) Groundwater Monitoring and Corrective Action Report was prepared by Tetra Tech, Inc. (Tetra Tech) on behalf of FirstEnergy (FE), for the Coal Combustion Byproduct Landfill ("CCBL", "CCR unit", or "site") at the Ft. Martin Power Station (hereinafter referred to as the "Station"). The CCR unit and Station are located in Monongalia County, West Virginia. This report was developed to comply with the requirements of § 257.90(e) of the federal CCR Rule (40 CFR, Part 257, Subpart D). In accordance with § 257.90(e)(6), an overview of the current status of the CCR groundwater program at the site is provided in the table below, and discussed in Sections 2.0 through 4.0 of this report:

Status Summary for Reporting Perio	od (January 1 to December 31, 2021)
Groundwater Monitoring Program in Effect as of January 1, 2021 - 257.90(e)(6)(i)	Assessment Monitoring (Sampling Event AM-6)
Groundwater Monitoring Program in Effect as of December 31, 2021 - 257.90(e)(6)(ii)	Assessment Monitoring (Sampling Event AM-8)
Appendix III SSI's during Reporting Period - 257.90(e)(6)(iii)	n/a – Site in Assessment Monitoring
Appendix IV SSL's during Reporting Period - 257.90(e)(6)(iv)	None
Assessment of Corrective Measures - 257.90(e)(6)(iv)	n/a – Site only in Assessment Monitoring
Assessment of Corrective Measures Public Meeting - 257.90(e)(6)(iv)	n/a – Site only in Assessment Monitoring
Selection of Remedy - 257.90(e)(6)(v)	n/a – Site only in Assessment Monitoring
Corrective Action - 257.90(e)(6)(vi)	n/a – Site only in Assessment Monitoring

1.1 BACKGROUND AND SITE CHARACTERISTICS

CCRs produced at the Station are placed in the facility's captive CCBL, which is located approximately 0.75 miles northwest of the Station. The landfill is an existing CCR unit that is regulated under West Virginia Department of Environmental Protection (WVDEP) Solid Waste/National Pollutant Discharge Elimination System (NPDES) Water Pollution Control Permit No. WV0075752 and under the CCR Rule. A WVDEP groundwater monitoring program for the

2021 ANNUAL CCR RULE GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

landfill has been in effect since 1993 and a separate CCR Rule groundwater monitoring program has been in effect since 2017. The permitted CCBL facility consists of two separate, active disposal areas, a haul road that also doubles as the primary Station access road, a gypsum stackout/loading pad, five combined leachate/sedimentation ponds, one equalization/settling pond, and a variety of stormwater management controls (channels, culverts, slope drains, etc.).

The two active disposal areas are separated by the haul road and consist of the Original landfill (approximately 70 acres in size and located south of the Haul Road) and the Expansion Area landfill (approximately 77 acres in size and located north of the haul road). The Original landfill, which has historically been the primary disposal area, is unlined but was built with a bottom ash drainage blanket placed on prepared original ground and that serves as a leachate collection layer. The Expansion Area landfill, which was constructed in 2009, is underlain with a composite liner system (geomembrane and geosynthetic clay liner) and has both leachate collection and leak detection layers. The Expansion Area landfill is permitted to be developed in two construction phases, referred to as Phase 1 and Phase 2. At this time, the Phase 1 area (approximately 30 acres) has been constructed and represents the active portion of the Expansion Area landfill.

Groundwater in the CCBL area occurs primarily within fractured bedrock. The Connellsville Sandstone has been identified as the uppermost aquifer for CCR Rule groundwater monitoring over most of the CCBL area, with the underlying Clarksburg units considered the uppermost aquifer in a few limited areas where monitoring is required but the Connellsville Sandstone has eroded away. Due to the site's positioning on a topographic high and its geologic setting, there is no shallow groundwater flow to the site from offsite areas. Historic and recent groundwater level data indicate groundwater flow at the CCBL to be primarily radial, away from the disposal areas and to the local springs/seeps in the nearby stream valleys, and that both flow systems (Connellsville and Clarksburg) exhibit very little seasonal and temporal fluctuations. A representative set of water level data from the current reporting period (2021) were used for contouring groundwater flow patterns at the site. A more detailed discussion of the site's geologic and hydrogeologic characteristics is provided in Section 2.0 of this report.

1.2 REGULATORY BASIS

As required by § 257.90(e) of the CCR Rule, Owners or Operators of existing CCR landfills and surface impoundments were to prepare an initial Annual Groundwater Monitoring and Corrective Action Report ("AGMCA Report") no later than January 31, 2018, and annually thereafter. According to the subject section, "For the preceding calendar year, the annual report must

2021 ANNUAL CCR RULE GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

document the status of the groundwater monitoring and corrective action program for the CCR unit, summarize key actions completed, describe any problems encountered, discuss actions to resolve the problems, and project key activities for the upcoming year."

This report has been developed to meet the general requirements above and the specific requirements of § 257.90(e)(1) through (6), which include:

- (1) A map, aerial image, or diagram showing the CCR unit and all background (or upgradient) and downgradient monitoring wells, to include the well identification numbers, that are part of the groundwater monitoring program for the CCR unit (see Figures 2-1 and 2-2);
- (2) Identification of any monitoring wells that were installed or decommissioned during the preceding year, along with a narrative description of why those actions were taken (see Section 2.1.1);
- (3) In addition to all the monitoring data obtained under §§ 257.90 through 257.98, a summary including the number of groundwater samples that were collected for analysis for each background and downgradient well, the dates the samples were collected, and whether the sample was required by the detection monitoring or assessment monitoring programs (see Sections 3.0 and 4.0 and Table 3-1);
- (4) A narrative discussion of any transition between monitoring programs (e.g., the date and circumstances for transitioning from detection monitoring to assessment monitoring in addition to identifying the constituent(s) detected at a statistically significant increase over background levels) (see Section 2.3);
- (5) Other information required to be included in the annual report as specified in §§ 257.90 through 257.98 (see Section 4.1 and Tables 4-1a, 4-1b, 4-2, and 4-3); and
- (6) A section at the beginning of the annual report that provides an overview of the current status of groundwater monitoring and corrective action programs for the CCR unit." (See Section 1.0).

In addition, the Owner or Operator must place the report in the facility's operating record as required by § 257.105(h)(1), provide notification of the report's availability to the appropriate State Director within 30 days of placement in the operating record as required by § 257.106(h)(1), and place the report on the facility's publicly accessible website, also within 30 days of placing the report in the operating record, as required by § 257.107(h)(1).

1.3 OVERVIEW OF REPORT CONTENTS

Section 1.0 of this report provided an overview of the CCR groundwater program status, CCR unit characteristics, regulatory basis, and a summary of the requirements for CCR Annual Groundwater Monitoring and Corrective Action Reports. Section 2.0 summarizes the status of key actions pertaining to CCR groundwater monitoring completed during 2021 for the CCBL and plans for the upcoming year. Section 3.0 discusses Detection Monitoring (DM) results from groundwater sampling events completed in 2021. Finally, Section 4.0 presents Assessment Monitoring (AM) results and corresponding statistical analyses and evaluations completed in 2021.

2.0 GENERAL INFORMATION

This section provides an overview of the status of the CCR groundwater monitoring program through 2021 and key activities planned for 2022.

2.1 STATUS OF THE CCR GROUNDWATER MONITORING AND CORRECTIVE ACTION PROGRAM

During calendar year 2021 (January 1st through December 31st), the following key actions were completed with regard to the CCR groundwater monitoring program for the CCBL.

2.1.1 Groundwater Monitoring Well System

the facility's As documented in previous AGMCA Reports (accessible at http://ccrdocs.firstenergycorp.com/), the certified CCR monitoring well network consists of three background wells (MW-101, -127, and -128), eight downgradient wells for the Original landfill (MW-106, -107, -129, -130, -131, -132, -133, and -134), eight downgradient wells for the Expansion Area landfill (MW-121, -123, -125, -135, -136, -137, -138, and -139), and two downgradient wells positioned between the two landfills (MW-109 and -112), as summarized in attached Table 2-1 and shown on attached Figures 2-1 and 2-2.

It was originally intended that upgradient wells MW-101 and -127, which are both screened in the Connellsville Sandstone, would be grouped for statistical evaluation purposes. However, it was subsequently determined that the two wells did not have the level of statistical similarity needed for grouping. As such, it was decided that only MW-101 would be used to establish background chemistry for the Connellsville Sandstone since it exhibited lower concentrations of all the Appendix III parameters than those measured in MW-127. MW-127 was left in place (i.e., it was not abandoned) as it remains part of the WVDEP groundwater monitoring program and its water levels have continued to be used to verify groundwater flow patterns at the site. No other changes to the monitoring well network (i.e., new wells added, or existing wells abandoned) occurred during 2021.

2.1.2 Groundwater Monitoring Plan

Consistent with the work performed and summarized in previous AGMCA Reports, the CCR unit's Groundwater Monitoring Plan (GWMP) was followed during all 2021 field sampling and laboratory analysis activities and for statistically evaluating groundwater monitoring data developed from the CCR sampling and analysis program. No changes to the facility's GWMP occurred during 2021.

2.1.3 Background Groundwater Sampling

As documented in the 2017 and 2018 AGMCA Reports, eight independent rounds of background groundwater samples were collected from each CCR monitoring well and each sample was analyzed for all Appendix III and IV parameters prior to initiating the facility's CCR Detection Monitoring program in October 2017. No modifications to this background dataset occurred during 2021.

2.1.4 Statistical Methods

As documented in the 2017 and 2018 AGMCA Reports, the background dataset discussed in Section 2.1.3 of this Report was used to select the appropriate statistical evaluation methods for each CCR groundwater monitoring parameter to identify any Statistically Significant Increases (SSIs) over background concentrations and determine whether any concentrations were at Statistically Significant Levels (SSLs) above their respective Groundwater Protection Standards (GWPS) established for the site. These statistical methods are available on the facility's publicly accessible website and no changes were made to them during 2021.

2.2 PROBLEMS ENCOUNTERED/RESOLVED

There were no significant problems (e.g., insufficient groundwater yields for sampling, quality control issues, etc.) encountered during 2021 with regard to the CCR groundwater monitoring program. One minor issue that did occur during AM-8 was the sampling team failing to collect the field duplicate sample that is required by the CCR unit's GWMP. This field duplicate is used as a quality assurance measure, however, the analytical results for AM-8 were consistent with historical results and did not include any outliers, indicating that appropriate quality control measures were taken during sample recovery.

2.3 TRANSITION BETWEEN MONITORING PROGRAMS

As documented in the 2018 AGMCA Report, the CCR unit transitioned from Detection Monitoring to Assessment Monitoring that year. As part of this transition, all required notifications were issued, appropriate GWPS for Appendix IV parameters were established, and the first two AM sampling events (AM-1 and AM-2) were completed that year. In 2019 and 2020, two additional AM sampling events were completed each year (AM-4 through AM-6) and statistical evaluations of the AM-1 through AM-6 sampling events have been performed and documented in the 2019 and 2020 AGMCA Reports, with no parameters being found at concentrations (SSLs) that exceeded their respective GWPS. As discussed in Section 4.1 of this Report, two AM sampling

events were completed in 2021 (AM-7 and AM-8), and statistical evaluations of that data also indicate there are no SSLs in any of the monitoring wells. Accordingly, as of December 31, 2021, the CCR unit remains in Assessment Monitoring.

2.4 KEY ACTIVITIES PLANNED FOR THE UPCOMING YEAR

The following are the key CCR groundwater compliance activities planned for 2022:

- Continue with Assessment Monitoring by conducting the annual and semi-annual rounds of sampling and analysis for applicable Appendix III and Appendix IV constituents [per 40 CFR § 257.96(b)] and evaluate the need to update the background data sets and associated Upper Prediction Limits (UPLs).
- If any SSLs are identified, provide appropriate notification [per § 257.95(g)] then potentially conduct an Appendix IV ASD [per § 257.95(g)(3)(ii)] to determine if a source other than the CCR unit may be causing the SSLs. Concurrent with undertaking an Appendix IV ASD, characterize the Nature and Extent (N&E) of the Appendix IV release and provide appropriate notification depending on the findings [per §§ 257.95(g)(1) and (2), respectively].
- If any SSLs are identified and an ASD is either not undertaken, indicates that an alternative source is not responsible for all the SSLs identified, or is not completed within 90 days of identifying there are SSLs, then initiate and perform an Assessment of Corrective Measures (ACM) in accordance with § 257.96.

3.0 DETECTION MONITORING INFORMATION

3.1 GROUNDWATER ANALYTICAL RESULTS SUMMARY

As noted in Section 2.3, site-wide Assessment Monitoring was performed throughout 2021. As part of the AM program, all DM (Appendix III) parameters were also analyzed during each AM sampling event.

The need to statistically evaluate the 2021 Appendix III data to identify SSIs and determine if AM was necessary was precluded by the CCR unit already being in AM during all of 2021, so no statistical analysis of the data was necessary. The 2021 Appendix III data that was collected and validated is presented in Table 3-1 with the intent of using it during the next update of the background dataset and associated UPLs, which will help increase the statistical power of future analyses.

4.0 ASSESSMENT MONITORING INFORMATION

4.1 GROUNDWATER ANALYTICAL RESULTS SUMMARY

In accordance with 40 CFR §§ 257.95(b) and (d)(1), the CCR groundwater sampling and analysis program implemented during 2021 consisted of two AM sampling events (AM-7 and AM-8) performed between January 26 and February 8, 2021, and between July 27 and August 24, 2021, respectively. For both AM events, all Appendix III and all Appendix IV constituents were analyzed with the exception of combined radium 226/228 during AM-7, which was inadvertently excluded from the sampling event. However, over the duration of the CCR program implemented at the site, combined radium 226/228 concentrations have either been below detectible limits or, when detected, measured at concentrations well below the associated GWPS in all of the wells that are part of the monitoring network. As such, the lack of radium data for AM-7 is not believed to have affected the 2021 AM program evaluations for the CCR units. The analyses that were performed during AM-7 and AM-8 exceed the requirements of § 257.95 which only stipulate analyzing for all Appendix IV parameters once per year. Laboratory analysis and validation of the sample data were completed on June 4, 2021, and January 3, 2022, for AM-7 and AM-8, respectively. Table 3-1 presents the validated analytical results for these events.

Statistical evaluations of AM data performed in 2021 and January 2022 included sampling events AM-7 and AM-8. All statistical evaluation work was performed in accordance with the certified methods included in both the facility's operating record and the publicly accessible website and the results were used to determine whether there were any detected Appendix IV parameters at SSLs above the CCR unit's established GWPS. As documented in the 2018 AGMCA Report, site-specific Appendix IV GWPS were established for the CCR unit using the higher of the federal Maximum Contaminant Level (MCL) or UPL for each parameter or, for those parameters that don't have MCLs, the higher of the EPA Risk Screening Level (RSL) or the UPL. The site-specific GWPS and the results of the statistical evaluations of AM-7 and AM-8 are presented in Tables 4-1a, 4-1b, 4-2, and 4-3 and discussed below.

Statistical evaluation of the AM-7 and AM-8 data indicated the following:

 For the Original landfill, SSIs occurred for multiple parameters in multiple wells in the two aquifers monitored beneath the site. For the Connellsville Sandstone (Table 4-1a), SSIs were identified for nine different Appendix IV parameters with at least one parameter having an SSI in all six of the downgradient wells, with the parameters and associated

wells being predominantly consistent with the findings from AM-1 through AM-6. However, none of the parameters were found at SSLs above their respective GWPS. For the underlying Clarksburg formation (Table 4-1b), SSIs were identified for three different Appendix IV parameters, with each of those parameters having an SSI in one of the downgradient wells (MW-129) during both AM events, while only one parameter had an SSI in the other downgradient well (MW-130) during AM-8. However, none of the parameters were found at SSLs above their respective GWPS.

- For the Expansion Area landfill, SSIs were identified in the Connellsville Sandstone (Table 4-2) for five different Appendix IV parameters with at least one parameter having an SSI in all eight downgradient wells, with the parameters and associated wells being predominantly consistent with the findings from AM-1 through AM-6. However, none of the parameters were found at SSLs above their respective GWPS.
- For the area between both landfills, SSIs were identified in the Connellsville Sandstone (Table 4-3) for five different Appendix IV parameters in the two downgradient wells, with the parameters being predominantly consistent with the findings from AM-1 through AM-6. However, none of the parameters were found at SSLs above their respective GWPS.

In summary, although there were SSIs identified for multiple Appendix IV parameters for both CCR disposal areas, none of the parameter concentrations were found at SSLs above their respective GWPS during sampling events AM-7 and AM-8. If any Appendix IV SSLs are identified during the upcoming 2022 AM sampling events, ASD, N&E Characterization, and/or ACM activities will then be undertaken as outlined in Section 2.4 of this Report, and the associated recordkeeping, notification, and reporting will be performed in accordance with the applicable requirements of 40 CFR §§ 257.95, 96, 105, 106, and 10.

2021 ANNUAL CCR RULE GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

TABLES

TABLE 2-1CCR RULE GROUNDWATER MONITORING SYSTEM WELL SUMMARYFT. MARTIN CCB LANDFILL – 2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

Well	Year Installed	Formation Monitored	Ground Surface Elevation (ft MSL)	Total Well Depth (ft bgs)	Monitored Interval (ft bgs)	Monitored Interval (ft MSL)	Casing ID and Material
Background							
MW-101	1993	Connellsville SS	1113.05	34.0	24.0 - 34.0	1079.05 - 1089.05	2" - Sch. 40 PVC
MW-127*	2008	Connellsville SS	1112.00	37.0	27.0 - 37.0	1075.00 – 1085.00	2" - Sch. 40 PVC
MW-128	2008	Clarksburg	1114.00	97.5	77.5 – 97.5	1016.50 – 1036.50	2" - Sch. 40 PVC
Original Land	Ifill - Downgrad	lient	·				
MW-106	1993	Connellsville SS	1111.51	44.0	24.0 - 44.0	1067.51 – 1087.51	2" - Sch. 40 PVC
MW-107	1993	Connellsville SS	1107.28	55.5	45.5 – 55.5	1051.78 – 1061.78	2" - Sch. 40 PVC
MW-129	2016	Clarksburg	1057.84	29.4	19.4 – 29.4	1028.40 - 1038.40	2" - Sch. 40 PVC
MW-130	2016	Clarksburg	1034.29	33.3	23.3 - 33.3	1001.03 - 1011.03	2" - Sch. 40 PVC
MW-131	2016	Connellsville SS	1133.45	25.5	15.5 – 25.5	1107.95 – 1117.95	2" - Sch. 40 PVC
MW-132	2016	Connellsville SS	1155.72	77.5	67.5 – 77.5	1078.27 – 1088.27	2" - Sch. 40 PVC
MW-133	2016	Connellsville SS	1130.70	45.3	35.3 – 45.3	1085.45 – 1095.45	2" - Sch. 40 PVC
MW-134	2016	Connellsville SS	1088.67	23.8	13.8 – 23.8	1064.91 – 1074.91	2" - Sch. 40 PVC
Expansion A	rea Landfill - Do	owngradient					
MW-121	2008	Connellsville SS	1098.00	39.0	29.0 - 39.0	1059.00 - 1069.00	2" - Sch. 40 PVC
MW-123	2008	Connellsville SS	1084.00	35.5	25.5 – 35.5	1048.50 – 1058.50	2" - Sch. 40 PVC
MW-125	2008	Connellsville SS	1140.41	75.0	55.0 – 75.0	1065.41 – 1085.41	2" - Sch. 40 PVC
MW-135	2016	Connellsville SS	1081.36	37.5	27.5 – 37.5	1043.82 – 1053.82	2" - Sch. 40 PVC
MW-136	2016	Connellsville SS	1075.59	22.5	12.5 – 22.5	1053.12 – 1063.12	2" - Sch. 40 PVC
MW-137	2016	Connellsville SS	1094.53	37.9	27.9 – 37.9	1056.64 - 1066.64	2" - Sch. 40 PVC
MW-138	2016	Connellsville SS	1150.12	49.9	39.9 – 49.9	1100.25 – 1110.25	2" - Sch. 40 PVC
MW-139	2016	Connellsville SS	1127.26	42.8	32.8 - 42.8	1084.48 – 1094.48	2" - Sch. 40 PVC
Both Landfill	s - Downgradie	nt	•	• 			
MW-109	1993	Connellsville SS	1122.79	54.5	34.5 – 54.5	1068.29 – 1088.29	2" - Sch. 40 PVC
MW-112	2002	Connellsville SS	1124.11	50.0	40.0 - 50.0	1074.11 – 1084.11	2" - Sch. 40 PVC

Notes: SS = sandstone MSL = mean sea level bgs = below ground surface ID = inside diameter PVC = polyvinyl chloride

* = used only for water level measurements

			APPENDIX III (all Chemical Constituents reported as TOTAL RECOVERABLE) ¹											APPENDIX I	V (all Chemical C	onstituents repo	rted as TOTAL RE	COVERABLE) ¹						
			BORON	CALCIUM	CHLORIDE	FLUORIDE	PH	SULFATE	TDS	ANTIMONY	ARSENIC	BARIUM	BERYLLIUM	CADMIUM	CHROMIUM	COBALT	LEAD	LITHIUM	MERCURY	MOLYBDENUM	SELENIUM	THALLIUM	RADIUM-226	RADIUM-228
SAMPLING	WELL ID ³	SAMPLE DATE	METALS	METALS	MISC	MISC	MISC	MISC	MISC	METALS	METALS	METALS	METALS	METALS	METALS	METALS	METALS	METALS	METALS	METALS	METALS	METALS	RADIOCHEM	RADIOCHEM
EVENT NO.2	WELLEID		-			_																	-	
(7 (11 (7)	N/N/ 101	00/00/0001	MG/L	MG/L	MG/L	MG/L	S.U.	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	MG/L	PCI/L	PCI/L
17 (AM-7) 18 (AM-8)	MW-101 MW-101	02/08/2021	0.2 U	64.104 68.844	28.7 37.4	0.086 J	6.74 J	53.7	328	0.001 U	0.0001 J	0.0628	0.0002 U	0.0006 U 0.0017 U	0.00039 J	0.0001 J	0.0005 U 0.0018 U	0.01034	0.00075 U	0.001 U	0.003 U 0.0068 U	0.00018 U	NA	NA 0.307 U
16 (AIVI-6) 17 (AM-7)	MW-101	08/16/2021 01/26/2021	0.2 U 0.2 U	84.509	1.56	0.087 J 0.176	7.24 J 7.09 J	55.2 72.6 J-	500 332	0.005 U 0.001 U	0.0013 U 0.0001 J	0.06681 0.06149	0.0004 U 0.0002 U	0.0017 U	0.0072 U 0.0003 J	0.002 U 0.00032 J	0.0018 U	0.01009 0.00792	0.00075 U 0.00075 U	0.005 U 0.00073 J	0.008 U	0.0006 U 0.00018 U	0.107 U NA	0.307 U NA
18 (AM-8)	MW-106	08/19/2021	0.2 U	91.312	1.6	0.170	7.09 J	81.6	352	0.001 U	0.0013 U	0.05592	0.0002 U	0.0000 U	0.0003 J	0.00032 J	0.0003 U	0.00807	0.00075 U	0.00261 J	0.0068 U	0.00018 U	0.3 U	0.215 U
17 (AM-7)	MW-100	01/28/2021	0.7451	74.236	3.18	0.25	7.27 J	130 J-	508	0.000 U	0.00009 J	0.03398	0.00005 J	0.0006 U	0.00065 J	0.00024 J	0.0005 U	0.01538	0.00075 U	0.00056 J	0.003 U	0.00018 U	NA	NA
18 (AM-8)	MW-107	08/24/2021	0.5814	73.803	2.88	0.241	7.25 J	118	524	0.005 U	0.0013 U	0.03915	0.0004 U	0.0017 U	0.01256	0.00026 J	0.0018 U	0.01898	0.00075 U	0.00137 J	0.0068 U	0.0006 U	0.2 U	0.432 U
17 (AM-7)	MW-109	02/04/2021	0.1217 J	246	14.9	0.275	7.07 J	448 J-	1020	0.001 U	0.00035 U	0.03078	0.0002 U	0.0006 U	0.00084 J	0.0006 J	0.0005 U	0.01757	0.00075 U	0.00055 J	0.003 U	0.00018 U	NA	NA
18 (AM-8)	MW-109	08/12/2021	0.0633 J	248	14.3	0.295	6.98 J	467	1250	0.005 U	0.0013 U	0.03019	0.0004 U	0.0017 U	0.0072 U	0.00054 J	0.0018 U	0.01899	0.00075 U	0.005 U	0.0068 U	0.0006 U	0.272 U	0.67
17 (AM-7)	MW-112	02/04/2021	0.2 U	82.312	39.1	0.076 J	7.28 J	39.7 J-	336	0.001 U	0.00011 J	0.16449	0.0002 U	0.0006 U	0.0015 U	0.00025 J	0.0005 U	0.00858	0.00075 U	0.001 U	0.003 U	0.00018 U	NA	NA
18 (AM-8)	MW-112	08/24/2021	0.038 J	84.132	41.4	0.072 J	7.24 J	33.3	376	0.005 U	0.0013 U	0.15234	0.0004 U	0.0017 U	0.0072 U	0.00022 J	0.0018 U	0.00965	0.00075 U	0.005 U	0.0068 U	0.0006 U	0.287 U	0.273 U
17 (AM-7)	MW-121	02/03/2021	0.2 U	79.325	13.1	0.129	7.29 J	90.6	472	0.001 U	0.00025 J	0.04251	0.0002 U	0.0006 U	0.00043 J	0.00042 J	0.0005 U	0.00973	0.00075 U	0.00162	0.003 U	0.00018 U	NA	NA
18 (AM-8)	MW-121	08/23/2021	0.019 J	82.704	14.5	0.119	7.28 J	95	608	0.005 U	0.0013 U	0.04051	0.0004 U	0.0017 U	0.0072 U	0.00026 J	0.0018 U	0.01084	0.00075 U	0.00182 J	0.0068 U	0.0006 U	0.177 U	0.267 U
17 (AM-7)	MW-123	01/27/2021	0.2 U	75.832	5.83	0.091 J	7.37 J	24.8 J-	392	0.001 U	0.00019 J	0.10936	0.0002 U	0.0006 U	0.00066 J	0.00018 J	0.0005 U	0.00549	0.00075 U	0.00115	0.0007 J	0.00018 U	NA	NA
18 (AM-8)	MW-123	07/29/2021	0.2 U	74.391	5.75	0.089 J	7.41 J	24 J-	388	0.005 U	0.0013 U	0.11655	0.0004 U	0.0017 U	0.0072 U	0.002 U	0.0018 U	0.0061	0.00075 U	0.005 U	0.0068 U	0.0006 U	0.655	0.889 U
17 (AM-7)	MW-125	01/28/2021	0.0707 J	120	1.19	0.206	7.36 J	189 J-	684	0.001 U	0.00013 J	0.01738	0.0002 U	0.0006 U	0.00032 J	0.00021 J	0.0005 U	0.0164	0.00075 U	0.0005 J	0.003 U	0.00018 U	NA	NA
18 (AM-8)	MW-125	07/29/2021	0.0857 J	124	1.17	0.202	7.23 J	191 J-	680	0.005 U	0.0013 U	0.01676	0.0004 U	0.0017 U	0.0072 U	0.002 U	0.0018 U	0.01737	0.00075 U	0.005 U	0.0068 U	0.0006 U	0.295 U	0.909 U
17 (AM-7)	MW-127	02/03/2021	0.0355 J	163	131	0.122	7.09 J	132	768	0.001 U	0.00011 J	0.04926	0.0002 U	0.0006 U	0.00134 J	0.00044 J	0.0005 U	0.0366	0.00075 U	0.001	0.003 U	0.00018 U	NA	NA
18 (AM-8)	MW-127	08/12/2021	0.2 U	168	134	0.131	7.17 J	127	1024	0.005 U	0.0005 J	0.04929	0.0004 U	0.0017 U	0.0072 U	0.00148	0.0018 U	0.04628	0.00075 U	0.00142 J	0.0068 U	0.0006 U	0.711	0.747
17 (AM-7)	MW-128	02/08/2021	0.1591 J	12.035	0.651	1.94	7.68 J	6.32	316	0.00032 J	0.00028 J	0.44065	0.0002 U	0.0006 U	0.00052 J	0.00014 J	0.00018 J	0.01412	0.00075 U	0.00088 J	0.003 U	0.00018 U	NA	NA
18 (AM-8)	MW-128	08/16/2021	0.132 J	12.232	0.692	1.93	7.38 J	6.5	548	0.005 U	0.0013 U	0.43646	0.0004 U	0.0017 U	0.0072 U	0.002 U	0.0018 U	0.01355	0.00075 U	0.005 U	0.0068 U	0.0006 U	0.234 U	0.185 U
17 (AM-7)	MW-129	02/03/2021	3.93	324	23.6	0.092 J	6.65 J	1080	1940	0.001 U	0.0007	0.02339	0.00007 J	0.0006 U	0.0015 U	0.00079 J	0.0005 U	0.02009	0.00075 U	0.001 U	0.003 U	0.00018 U	NA	NA
18 (AM-8)	MW-129	08/24/2021	3.85	351	20.7	0.091 J	6.6 J	1070 J-	3453	0.005 U	0.00067	0.02073	0.00015 J	0.0017 U	0.0072 U	0.00075 J	0.0018 U	0.0188	0.00075 U	0.005 U	0.0068 U	0.0006 U	0.554	0.538
17 (AM-7)	MW-130	02/03/2021	0.0755 J	57.001	7.44	0.17	7.05 J	103	324	0.00022 J	0.00047	0.05461	0.0002 U	0.0006 U	0.00031 J	0.00056 J	0.0005 U	0.00443	0.00075 U	0.00022 J	0.003 U	0.00018 U	NA	NA
18 (AM-8)	MW-130	08/23/2021	0.101 J	58.11	6.68	0.094 J	7.09 J	92.8	396	0.005 U	0.00084	0.07866	0.0004 U	0.0017 U	0.0072 U	0.0015	0.0018 U	0.00489	0.00075 U	0.005 U	0.0068 U	0.0006 U	0.412 U	0.429 U
17 (AM-7)	MW-131	01/28/2021	0.2 U	57.872	0.703	0.216	7.25 J	36.3 J-	272	0.001 U	0.0001 J	0.10792	0.0002 U	0.0006 U	0.0015 U	0.00011 J	0.0005 U	0.00855	0.00075 U	0.001 U	0.003 U	0.00018 U	NA	NA
17 (AM-7)	MW-131 (D)	01/28/2021	0.2 U	58.638	0.692	0.215	7.36 J	36.1 J-	268	0.001 U	0.00035 U	0.10589	0.0002 U	0.0006 U	0.0015 U	0.00015 J	0.0005 U	0.00954	0.00075 U	0.001 U	0.003 U	0.00018 U	NA	NA
18 (AM-8)	MW-131	08/24/2021	0.0796 J	63.489	0.735	0.242	7.25 J	37.3 J-	296	0.005 U	0.0013 U	0.09797	0.0004 U	0.0017 U	0.0072 U	0.002 U	0.0018 U	0.00809	0.00075 U	0.005 U	0.0068 U	0.0006 U	0.247 U	0.366 U
17 (AM-7)	MW-132	01/26/2021	0.2282	9.67	2.51	1.73	8.09 J	203 J-	736	0.00246	0.00399	0.05183	0.0002 U	0.0006 U	0.00102 J	0.001 U	0.00012 J	0.03018	0.00075 U	0.01234	0.00081 J	0.00018 U	NA	NA
18 (AM-8)	MW-132	08/19/2021	0.2059	12.971	1.62	1.45	8.24 J	212	776	0.00221 J	0.0038	0.04298	0.0004 U	0.0017 U	0.0072 U	0.002 U	0.0018 U	0.03727	0.00075 U	0.00877	0.0068 U	0.0006 U	0.378	0.398 U
17 (AM-7) 18 (AM-8)	MW-133 MW-133	01/26/2021 08/19/2021	0.9096	193 201	5.17 4.94	0.145 0.129	7.13 J 7.19 J	398 J- 441	904 1072	0.001 U 0.005 U	0.00029 J 0.0013 U	0.02189 0.01781	0.00005 J 0.0004 U	0.0006 U 0.0017 U	0.0015 U 0.0072 U	0.00032 J 0.00024 J	0.0005 U 0.0018 U	0.02014 0.02367	0.00075 U 0.00075 U	0.00181 0.00243 J	0.003 U 0.0068 U	0.00018 U 0.0006 U	NA 0.335	NA 0.0191 U
17 (AM-7)	MW-133	02/08/2021	0.9621 0.2 U	54.032	1.52	0.129 0.052 J	7.19 J 7.31 J	7.88	252	0.003 U 0.001 U	0.0013 0	0.27073	0.0004 U	0.0017 U	0.0072 0	0.00024 J	0.0018 U	0.02307	0.00075 U	0.00243 J	0.008 U	0.0008 U	0.335 NA	NA
17 (AM-7) 18 (AM-8)	MW-134	02/08/2021	0.2 0 0.0293 J	56.48	1.32	0.052 J	7.31 J	8.37	232	0.001 U	0.0004 0.0013 U	0.27073	0.0002 U 0.0004 U	0.0008 U 0.0017 U	0.00031 J	0.00034 J 0.002 U	0.00023 J 0.0018 U	0.00853	0.00075 U	0.00042 J	0.003 U	0.00018 U	0.737	0.406 U
17 (AM-7)	MW-134	02/02/2021	0.0233 J	68.121	1.46	0.157	7.20 J	15.6	296	0.003 U 0.001 U	0.00067	0.15757	0.0004 U	0.00017 U	0.0012 U	0.0002 U	0.0005 U	0.00941	0.00075 U	0.00116	0.003 U	0.00018 U	NA	0.400 C
17 (AM-7) 18 (AM-8)	MW-135	02/02/2021	0.0272 J 0.0394 J	71.46	1.46	0.137	7.32 J	15.8	320	0.001 U	0.00067 0.00062 J	0.15757	0.0002 U 0.0004 U	0.0008 U 0.0017 U	0.0013 U	0.0007 J	0.0005 U	0.00941	0.00075 U	0.00118 0.00145 J	0.003 U	0.00018 U	0.603	0.273 U
17 (AM-7)	MW-135	01/26/2021	0.0394 J	54.243	3.47	0.159	6.67 J	43.6 J-	320	0.003 U	0.00017 J	0.07904	0.0004 U	0.0006 U	0.00042 J	0.0001 J	0.0005 U	0.00321	0.00075 U	0.00039 J	0.003 U	0.00018 U	NA	0.273 0 NA
18 (AM-8)	MW-136	07/28/2021	0.2 U	52.319	2.67	0.134	7.03 J	35.5	276	0.005 U	0.0013 U	0.07925	0.0002 U	0.0017 U	0.0072 U	0.00029 J	0.0018 U	0.00367	0.00075 U	0.005 U	0.0068 U	0.0006 U	0.35	0.729
17 (AM-7)	MW-137	01/26/2021	0.2 U	55.754	1.88	0.086 J	6.92 J	17.5 J-	284	0.000 U	0.00029 J	0.13501	0.0002 U	0.0006 U	0.0012 U	0.00022 J	0.0005 U	0.0057	0.00075 U	0.000 U	0.003 U	0.00018 U	NA	NA
18 (AM-8)	MW-137	07/29/2021	0.2 U	53.705	2.4	0.087 J	7.15 J	19.1 J-	272	0.005 U	0.0013 U	0.12817	0.0002 U	0.0017 U	0.0072 U	0.002 U	0.0018 U	0.00562	0.00075 U	0.001 U	0.0068 U	0.0006 U	0.235 U	0.227 U
17 (AM-7)	MW-138	01/27/2021	0.0791 J	241	1.66	0.345	6.92 J	519 J-	1185	0.001 U	0.00038	0.01056 J	0.0002 U	0.0006 U	0.0015 U	0.00108	0.0005 U	0.01596	0.00075 U	0.001 U	0.003 U	0.00018 U	NA	NA
18 (AM-8)	MW-138	07/27/2021	0.086 J	249	1.68	0.343	7.02 J	514	1230	0.005 U	0.00052 J	0.01018 J	0.0004 U	0.0017 U	0.0072 U	0.00098 J	0.0018 U	0.01762	0.00075 U	0.005 U	0.0068 U	0.0006 U	0.902	-0.265 U
17 (AM-7)	MW-139	02/02/2021	0.1534 J	106	1.84	0.405	7.25 J	78.5	412	0.001 U	0.00031 J	0.04293	0.0002 U	0.0006 U	0.0015 U	0.00026 J	0.0005 U	0.01049	0.00075 U	0.00044 J	0.003 U	0.00018 U	NA	NA
18 (AM-8)	MW-139	07/27/2021	0.1629 J	106	1.89	0.375	7.29 J	68.8	436	0.005 U	0.00032 J	0.04349	0.0004 U	0.0017 U	0.0072 U	0.0002 J	0.0018 U	0.01218	0.00075 U	0.005 U	0.0068 U	0.0006 U	0.333	-0.531 U

NOTES: ¹ Lab analyses were completed by Beta Lab and Eurofins/TestAmerica Laboratories, Inc., both of which are accredited/certified laboratories: Beta Lab NSF/ISR ISO 9001:2015 Cert. No. 83761-IS8 (Exp. 01-16-24) and Eurofins/TestAmerica WVDEP Certificate No. 381, Expiration Date: 10-31-22. ² Event Nos. 17 and 18 correspond to Assessment Monitoring (AM) sampling events AM-7 and AM-8, respectively.

³ Field duplicate samples that were taken for Quality Control purposes are noted with a (D).

NA = Parameter was not analyzed.

DATA QUALIFER DEFINITIONS:

The following definitions provide brief explanations of the validation qualifiers assigned to results in the data review process.

- U The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted method detection limit for sample and method.
- The analyte was positively identified and the associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of J
- the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the reporting limit). J+ The result is an estimated quantity, but the result may be biased high.
- The result is an estimated quantity, but the result may be biased low. J-
- UJ The analyte was analyzed for, but was not detected. The reported detection limit is approximate and may be inaccurate or imprecise.
- R The sample result (detected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in sample
- UR The sample result (nondetected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in sample.

2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

TABLE 4-1a CCR RULE INTERWELL COMPARISON OF SAMPLING EVENT AM-7 AND -8 APPENDIX IV DATA

			l - Connellsville Sa	ndatana					Event 17	7 (AM-7)		
		Original Landill	I - Connelisville Sa	Downgradient Wells								
		Data Distribution for Background Well			Federal							
Parameter	Units	MW-101	UPL Type	UPL Value ^{a,b}	MCLs/RSLs	GWPS	MW-131	MW-132	MW-133	MW-134	MW-106	MW-107
Antimony	mg/L	Unknown	Poisson	0.00146	0.006	0.006	<0.001	0.00246	<0.001	<0.001	<0.001	<0.001
Arsenic	mg/L	Unknown	Poisson	0.0015	0.01	0.01	0.00015	0.00399	0.00029	0.0004	0.0001	0.00009
Barium	mg/L	Normal	Parametric	0.092642	2	2	0.1069	0.05183	0.02189	0.27073	0.06149	0.03398
Beryllium	mg/L	Unknown ^c	DQ^{d}	NA	0.004	0.004	<0.0002	<0.0002	0.00005	<0.0002	<0.0002	0.00005
Cadmium	mg/L	Unknown ^c	DQ^{d}	NA	0.005	0.005	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006
T. Chromium	mg/L	Unknown ^c	DQ^{d}	NA	0.1	0.1	<0.0015	0.00102	<0.0015	0.00031	0.0003	0.00065
Cobalt	mg/L	Unknown ^c	DQ ^d	NA	0.006	0.006	0.00013	<0.001	0.00032	0.00034	0.00032	0.00024
Fluoride	mg/L	Normal	Parametric	0.103	4	4	0.2155	1.73	0.145	0.052	0.176	0.25
Lead	mg/L	Unknown ^c	DQ^{d}	NA	0.015	0.015	<0.0005	0.00012	<0.0005	0.00023	<0.0005	<0.0005
Lithium	mg/L	Normal	Parametric	0.009909	0.04	0.04	0.00905	0.03018	0.02014	0.0102	0.00792	0.01538
Mercury	mg/L	Unknown	Poisson	0.00029	0.002	0.002	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
Molybdenum	mg/L	Unknown	Poisson	0.00765	0.1	0.1	<0.001	0.01234	0.00181	0.00042	0.00073	0.00056
Selenium	mg/L	Unknown ^c	DQ^{d}	NA	0.5	0.5	<0.003	0.00081	<0.003	<0.003	<0.003	<0.003
Thallium	mg/L	Unknown ^c	DQ ^d	NA	0.002	0.002	<0.00018	<0.00018	<0.00018	<0.00018	<0.00018	<0.00018
Sum Ra226+Ra228 ^e	pCi/L	Unknown	Poisson	0.54	5	5	NA	NA	NA	NA	NA	NA

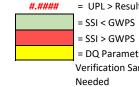
^aPrediction Limits calculated using 5% alpha.

^bUpper Prediction Limit used for all parameters.

^cData distribution set to Unknown if all values non-detect in upgradient well.

^dDQ is Double Quantification Rule. If two successive, independent detected values occur, that would be an SSI and also an SSL if > GWPS. However, if value was detected in upgradient well during the same sampling event, would use Poisson PL instead.

^eRadium not analyzed (NA) during Event 17.


									Event 18	3 (AM-8)		
	Original Landfil	Downgradient Wells										
Parameter	Units	Data Distribution for Background Well MW-101	UPL Type	UPL Value ^{a,b}	Federal MCLs/RSLs	GWPS	MW-131	MW-132	MW-133	MW-134	MW-106	MW-107
Antimony	mg/L	Unknown	Poisson	0.00146	0.006	0.006	<0.005	0.00221	<0.005	<0.005	<0.005	<0.005
Arsenic	mg/L	Unknown	Poisson	0.0015	0.01	0.01	<0.0013	0.0038	<0.0013	<0.0013	<0.0013	<0.0013
Barium	mg/L	Normal	Parametric	0.092642	2	2	0.09797	0.04298	0.01781	0.27296	0.05592	0.03915
Beryllium	mg/L	Unknown ^c	DQ^{d}	NA	0.004	0.004	< 0.0004	< 0.0004	<0.0004	< 0.0004	<0.0004	<0.0004
Cadmium	mg/L	Unknown ^c	DQ^{d}	NA	0.005	0.005	<0.0017	<0.0017	<0.0017	<0.0017	<0.0017	<0.0017
T. Chromium	mg/L	Unknown ^c	DQ^d	NA	0.1	0.1	<0.0072	<0.0072	<0.0072	<0.0072	<0.0072	0.01256
Cobalt	mg/L	Unknown ^c	DQ^{d}	NA	0.006	0.006	<0.002	<0.002	0.00024	<0.002	0.00031	0.00026
Fluoride	mg/L	Normal	Parametric	0.103	4	4	0.242	1.45	0.129	0.055	0.27	0.241
Lead	mg/L	Unknown ^c	DQ^{d}	NA	0.015	0.015	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018
Lithium	mg/L	Normal	Parametric	0.009909	0.04	0.04	0.00809	0.03727	0.02367	0.00853	0.00807	0.01898
Mercury	mg/L	Unknown	Poisson	0.00029	0.002	0.002	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075
Molybdenum	mg/L	Unknown	Poisson	0.00765	0.1	0.1	<0.005	0.00877	0.00243	<0.005	0.00261	0.00137
Selenium	mg/L	Unknown ^c	DQ^{d}	NA	0.5	0.5	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068
Thallium	mg/L	Unknown ^c	DQ^{d}	NA	0.002	0.002	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006
Sum Ra226+Ra228	pCi/L	Unknown	Poisson	0.54	5	5	<0.613	0.577	0.34455	0.94	<0.515	<0.632

^aPrediction Limits calculated using 5% alpha.

^bUpper Prediction Limit used for all parameters.

^cData distribution set to Unknown if all values non-detect in upgradient well.

^dDQ is Double Quantification Rule. If two successive, independent detected values occur, that would be an SSI and also an SSL if > GWPS. However, if value was detected in upgradient well during the same sampling event, would use Poisson PL instead.

= UPL > Result > MCL/RSL #.#### = SSI < GWPS = SSI > GWPS = DQ Parameter with Verification Sampling Needed

2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

Event 17 Backgrou MW-	und Well
<0.001	U
0.0001	J
0.0628	
<0.0002	U
<0.0006	U
0.00039	J
0.0001	J
0.086	J
<0.0005	U
0.01034	
<0.00075	U
<0.001	U
<0.003	U
<0.00018	U
NA	

= UPL > Result > MCL/RSL

= DQ Parameter with

Verification Sampling

Event 18 Backgrou MW-	und Well
<0.005	U
< 0.0013	U
0.06681	
<0.0004	U
<0.0017	U
<0.0072	U
<0.002	U
0.087	J
<0.0018	U
0.01009	
<0.00075	U
<0.005	U
<0.0068	U
<0.0006	U
<0.414	U

TABLE 4-1b CCR RULE INTERWELL COMPARISON OF SAMPLING EVENT AM-7 AND -8 APPENDIX IV DATA

		Original Landf	ill - Clarksburg For	Event 17 (AM-7) Downgradient Wells								
		Data	-						Downgrad	lient Wells		
		Distribution										
		for										
		Background										
		Well			Federal							
Parameter	Units	MW-128	UPL Type	UPL Value ^{a,b}	MCLs/RSLs	GWPS	MW-129	MW-130				
Antimony	mg/L	Unknown	Poisson	0.000576	0.006	0.006	< 0.001	0.00022				
Arsenic	mg/L	Normal	Parametric	0.001357	0.01	0.01	0.0007	0.00047				
Barium	mg/L	Normal	Parametric	0.509786	2	2	0.02339	0.05461				
Beryllium	mg/L	Unknown ^c	DQ ^d	NA	0.004	0.004	0.00007	<0.0002				
Cadmium	mg/L	Unknown ^c	DQ ^d	NA	0.005	0.005	<0.0006	<0.0006				
T. Chromium	mg/L	Unknown	Poisson	0.00114	0.1	0.1	<0.0015	0.00031				
Cobalt	mg/L	Unknown ^c	DQ^d	NA	0.006	0.006	0.00079	0.00056				
Fluoride	mg/L	Normal	Parametric	2.133	4	4	0.092	0.17				
Lead	mg/L	Unknown ^c	DQ ^d	NA	0.015	0.015	<0.0005	<0.0005				
Lithium	mg/L	Normal	Parametric	0.013878	0.04	0.04	0.02009	0.00443				
Mercury	mg/L	Unknown	Poisson	0.00099	0.002	0.002	<0.00075	<0.00075				
Molybdenum	mg/L	Normal	Parametric	0.009648	0.1	0.1	< 0.001	0.00022				
Selenium	mg/L	Unknown ^c	DQ ^d	NA	0.5	0.5	<0.003	<0.003				
Thallium	mg/L	Unknown ^c	DQ ^d	NA	0.002	0.002	<0.00018	<0.00018				
Sum Ra226+Ra228 ^e	pCi/L	Unknown	Non-parametric	1.127	5	5	NA	NA				

^aPrediction Limits calculated using 5% alpha.

^bUpper Prediction Limit used for all parameters.

^cData distribution set to Unknown if all values non-detect in upgradient well

^dDQ is Double Quantification Rule. If two successive, independent detected values occur, that would be an SSI and also an SSL if > GWPS. However, if value was detected in upgradient well during the same sampling event, would use Poisson PL instead.

^eRadium not analyzed (NA) during Event 17.

		0.1.1.1.1.1.1							Event 18	3 (AM-8)		
		Original Landi	ill - Clarksburg For	Downgradient Wells								
Parameter	Units	Data Distribution for Background Well MW-128	UPL Type	UPL Value ^{a,b}	Federal MCLs/RSLs	GWPS	MW-129	MW-130				
Antimony	mg/L	Unknown	Poisson	0.000576	0.006	0.006	<0.005	<0.005				
Arsenic	mg/L	Normal	Parametric	0.001357	0.01	0.01	0.00067	0.00084				
Barium	mg/L	Normal	Parametric	0.509786	2	2	0.02073	0.07866				
Beryllium	mg/L	Unknown ^c	DQ ^d	NA	0.004	0.004	0.00015	<0.0004				
Cadmium	mg/L	Unknown ^c	DQ ^d	NA	0.005	0.005	<0.0017	<0.0017				
T. Chromium	mg/L	Unknown	Poisson	0.00114	0.1	0.1	<0.0072	<0.0072				
Cobalt	mg/L	Unknown ^c	DQ^d	NA	0.006	0.006	0.00075	0.0015				
Fluoride	mg/L	Normal	Parametric	2.133	4	4	0.091	0.094				
Lead	mg/L	Unknown ^c	DQ ^d	NA	0.015	0.015	<0.0018	<0.0018				
Lithium	mg/L	Normal	Parametric	0.013878	0.04	0.04	0.0188	0.00489				
Mercury	mg/L	Unknown	Poisson	0.00099	0.002	0.002	<0.00075	<0.00075				
Molybdenum	mg/L	Normal	Parametric	0.009648	0.1	0.1	<0.005	<0.005				
Selenium	mg/L	Unknown ^c	DQ ^d	NA	0.5	0.5	<0.0068	<0.0068				
Thallium	mg/L	Unknown ^c	DQ ^d	NA	0.002	0.002	<0.0006	<0.0006				
Sum Ra226+Ra228	pCi/L	Unknown	Non-parametric	1.127	5	5	1.092	<0.841				

^aPrediction Limits calculated using 5% alpha.

^bUpper Prediction Limit used for all parameters.

^cData distribution set to Unknown if all values non-detect in upgradient well

^dDQ is Double Quantification Rule. If two successive, independent detected values occur, that would be an SSI and also an SSL if > GWPS. However, if value was detected in upgradient well during the same sampling event, would use Poisson PL instead.

#.####

	= SSI < G
	= SSI > G
	= DQ Par
	Verificati
	Needed

2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

Event 17 Backgrou MW-	und Well
0.00032	J
0.00028	J
0.44065	
<0.0002	U
<0.0006	U
0.00052	J
0.00014	J
1.94	
0.00018	J
0.01412	
<0.00075	U
0.00088	J
<0.003	U
<0.00018	U
NA	

= UPL > Result > MCL/RSL

= SSI < GWPS

= SSI > GWPS

= DQ Parameter with

Verification Sampling

Event 18 (AM-8) Background Well MW-128								
<0.005	U							
<0.0013	U							
0.43646								
<0.0004	U							
<0.0017	U							
<0.0072	U							
<0.002	U							
1.93								
<0.0018	U							
0.01355								
<0.00075	U							
<0.005	U							
<0.0068	U							
<0.0006	U							
0.419	U							

#.##### = UPL > Result > MCL/RSL

I < GWPS

SI > GWPS

Q Parameter with

fication Sampling

TABLE 4-2 CCR RULE INTERWELL COMPARISON OF SAMPLING EVENT AM-7 AND -8 APPENDIX IV DATA

	Eve	ancion Aroa Lan	dfill - Connellsvill	o Conditiono			Event 17 (AM-7)										
	Exp	ansion Area Lan	ann - connensvin	e sandstone						Downgrad	lient Wells						
Parameter	Units	Data Distribution for Background Well MW-101	UPL Type	UPL Value ^{a,b}	Federal MCLs/RSLs	GWPS	MW-121	MW-123	MW-125	MW-135	MW-136	MW-137	MW-138	MW-139		Event 17 (Backgroun MW-1(nd Well
Antimony	mg/L	Unknown	Poisson	0.00146	0.006	0.006	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<	<0.001	U
Arsenic	mg/L	Unknown	Poisson	0.0015	0.01	0.01	0.00025	0.00019	0.00013	0.00067	0.00017	0.00029	0.00038	0.00031	(0.0001	J
Barium	mg/L	Normal	Parametric	0.092642	2	2	0.04251	0.10936	0.01738	0.15757	0.07904	0.13501	0.01056	0.04293	(0.0628	
Beryllium	mg/L	Unknown ^c	DQ^{d}	NA	0.004	0.004	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<	0.0002	U
Cadmium	mg/L	Unknown ^c	DQ^d	NA	0.005	0.005	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<	0.0006	U
T. Chromium	mg/L	Unknown ^c	DQ ^d	NA	0.1	0.1	0.00043	0.00066	0.00032	<0.0015	0.00042	<0.0015	<0.0015	<0.0015	0	0.00039	J
Cobalt	mg/L	Unknown ^c	DQ ^d	NA	0.006	0.006	0.00042	0.00018	0.00021	0.00061	0.00031	0.00022	0.00108	0.00026	(0.0001	J
Fluoride	mg/L	Normal	Parametric	0.103	4	4	0.129	0.091	0.206	0.157	0.159	0.086	0.345	0.405		0.086	J
Lead	mg/L	Unknown ^c	DQ^{d}	NA	0.015	0.015	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<	0.0005	U
Lithium	mg/L	Normal	Parametric	0.009909	0.04	0.04	0.00973	0.00549	0.0164	0.00941	0.00282	0.0057	0.01596	0.01049	0	0.01034	
Mercury	mg/L	Unknown	Poisson	0.00029	0.002	0.002	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<(0.00075	U
Molybdenum	mg/L	Unknown	Poisson	0.00765	0.1	0.1	0.00162	0.00115	0.0005	0.00116	0.00039	<0.001	<0.001	0.00044	<	<0.001	U
Selenium	mg/L	Unknown ^c	DQ^{d}	NA	0.5	0.5	<0.003	0.0007	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<	<0.003	U
Thallium	mg/L	Unknown ^c	DQ^d	NA	0.002	0.002	<0.00018	<0.00018	<0.00018	<0.00018	<0.00018	<0.00018	<0.00018	<0.00018	<(0.00018	U
Sum Ra226+Ra228 ^e	pCi/L	Unknown	Poisson	0.54	5	5	NA	NA	NA	NA	NA	NA	NA	NA		NA	

^aPrediction Limits calculated using 5% alpha.

^bUpper Prediction Limit used for all parameters.

^cData distribution set to Unknown if all values non-detect in upgradient well

^dDQ is Double Quantification Rule. If two successive, independent detected values occur, that would be an SSI and also an SSL if > GWPS. However, if value was

detected in upgradient well during the same sampling event, would use Poisson PL instead.

^eRadium not analyzed (NA) during Event 17.

	Expansion Area Landfill - Connellsville Sandstone								Event 18 (AM-8) Downgradient Wells						
Parameter	Units	Data Distribution for Background Well MW-101	UPL Type	UPL Value ^{a,b}	Federal MCLs/RSLs	GWPS	MW-121	MW-123	MW-125	MW-135	MW-136	MW-137	MW-138	MW-139	
Antimony	mg/L	Unknown	Poisson	0.00146	0.006	0.006	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
Arsenic	mg/L	Unknown	Poisson	0.0015	0.01	0.01	<0.0013	<0.0013	<0.0013	0.00062	< 0.0013	<0.0013	0.00052	0.00032	
Barium	mg/L	Normal	Parametric	0.092642	2	2	0.04051	0.11655	0.01676	0.16088	0.07925	0.12817	0.01018	0.04349	
Beryllium	mg/L	Unknown ^c	DQ^{d}	NA	0.004	0.004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	<0.0004	< 0.0004	<0.0004	
Cadmium	mg/L	Unknown ^c	DQ^{d}	NA	0.005	0.005	<0.0017	<0.0017	<0.0017	<0.0017	<0.0017	<0.0017	<0.0017	<0.0017	
T. Chromium	mg/L	Unknown ^c	DQ ^d	NA	0.1	0.1	<0.0072	<0.0072	<0.0072	<0.0072	<0.0072	<0.0072	<0.0072	<0.0072	
Cobalt	mg/L	Unknown ^c	DQ ^d	NA	0.006	0.006	0.00026	<0.002	<0.002	0.0007	0.00029	<0.002	0.00098	0.0002	
Fluoride	mg/L	Normal	Parametric	0.103	4	4	0.119	0.089	0.202	0.142	0.134	0.087	0.343	0.375	
Lead	mg/L	Unknown ^c	DQ^{d}	NA	0.015	0.015	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	<0.0018	
Lithium	mg/L	Normal	Parametric	0.009909	0.04	0.04	0.01084	0.0061	0.01737	0.00921	0.00367	0.00562	0.01762	0.01218	
Mercury	mg/L	Unknown	Poisson	0.00029	0.002	0.002	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	<0.00075	
Molybdenum	mg/L	Unknown	Poisson	0.00765	0.1	0.1	0.00182	<0.005	<0.005	0.00145	<0.005	<0.005	<0.005	<0.005	
Selenium	mg/L	Unknown ^c	DQ^{d}	NA	0.5	0.5	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	<0.0068	
Thallium	mg/L	Unknown ^c	DQ^{d}	NA	0.002	0.002	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	<0.0006	
Sum Ra226+Ra228	pCi/L	Unknown	Poisson	0.54	5	5	<0.444	1.0995	<1.204	0.7395	1.079	<0.462	0.902	0.333	

^aPrediction Limits calculated using 5% alpha.

^bUpper Prediction Limit used for all parameters.

^cData distribution set to Unknown if all values non-detect in upgradient well

^dDQ is Double Quantification Rule. If two successive, independent detected values occur, that would be an SSI and also an SSL if > GWPS. However, if value was detected in upgradient well during the same sampling event, would use Poisson PL instead.

#.####

2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

= UPL > Result > MCL/RSL
= SSI < GWPS
= SSI > GWPS
= DQ Parameter with
Verification Sampling
Needed

Backgro	8 (AM-8) und Well -101
<0.005	U
< 0.0013	U
0.06681	
< 0.0004	U
<0.0017	U
<0.0072	U
<0.002	U
0.087	J
<0.0018	U
0.01009	
<0.00075	U
< 0.005	U
<0.0068	U
<0.0006	U
<0.414	U

#.##### = UPL > Result > MCL/RSL

= SSI < GWPS

= SSI > GWPS

= DQ Parameter with Verification Sampling

Needed

TABLE 4-3 CCR RULE INTERWELL COMPARISON OF SAMPLING EVENT AM-7 AND -8 APPENDIX IV DATA

	ndfills (Porimote	Event 17 (AM-7)										
	Both Landfills (Perimeter Wells) - Connellsville Sandstone								Downgrad	dient Wells		
Parameter	Units	Data Distribution for Background Well MW-101	UPL Type	UPL Value ^{a,b}	Federal MCLs/RSLs	GWPS	MW-109	MW-112				
Antimony	mg/L	Unknown	Poisson	0.00146	0.006	0.006	<0.001	<0.001				
Arsenic	mg/L	Unknown	Poisson	0.0015	0.01	0.01	<0.00035	0.00011				
Barium	mg/L	Normal	Parametric	0.092642	2	2	0.03078	0.16449				
Beryllium	mg/L	Unknown ^c	DQ^{d}	NA	0.004	0.004	<0.0002	<0.0002				
Cadmium	mg/L	Unknown ^c	DQ^{d}	NA	0.005	0.005	<0.0006	<0.0006				
T. Chromium	mg/L	Unknown ^c	DQ^{d}	NA	0.1	0.1	0.00084	<0.0015				
Cobalt	mg/L	Unknown ^c	DQ^{d}	NA	0.006	0.006	0.0006	0.00025				
Fluoride	mg/L	Normal	Parametric	0.103	4	4	0.275	0.076				
Lead	mg/L	Unknown ^c	DQ^{d}	NA	0.015	0.015	<0.0005	<0.0005				
Lithium	mg/L	Normal	Parametric	0.009909	0.04	0.04	0.01757	0.00858				
Mercury	mg/L	Unknown	Poisson	0.00029	0.002	0.002	<0.00075	<0.00075				
Molybdenum	mg/L	Unknown	Poisson	0.00765	0.1	0.1	0.00055	<0.001				
Selenium	mg/L	Unknown ^c	DQ^{d}	NA	0.5	0.5	< 0.003	<0.003				
Thallium	mg/L	Unknown ^c	DQ^{d}	NA	0.002	0.002	<0.00018	<0.00018				
Sum Ra226+Ra228 ^e	pCi/L	Unknown	Poisson	0.54	5	5	NA	NA				

^aPrediction Limits calculated using 5% alpha.

^bUpper Prediction Limit used for all parameters.

^cData distribution set to Unknown if all values non-detect in upgradient well

^dDQ is Double Quantification Rule. If two successive, independent detected values occur, that would be an SSI and also an SSL if > GWPS. However, if value was detected in upgradient well during the same sampling event, would use Poisson PL instead.

^eRadium not analyzed (NA) during Event 17.

	Both Landfills (Perimeter Wells) - Connellsville Sandstone								Event 18 (AM-8) Downgradient Wells				
Parameter	Units	Data Distribution for Background Well MW-101	UPL Type	UPL Value ^{a,b}	Federal MCLs/RSLs	GWPS	MW-109	MW-112	Downgrad				
Antimony	mg/L	Unknown	Poisson	0.00146	0.006	0.006	<0.00018	<0.005					
Arsenic	mg/L	Unknown	Poisson	0.0015	0.01	0.01	< 0.0013	< 0.0013					
Barium	mg/L	Normal	Parametric	0.092642	2	2	0.03019	0.15234					
Beryllium	mg/L	Unknown ^c	DQ^{d}	NA	0.004	0.004	<0.0004	<0.0004					
Cadmium	mg/L	Unknown ^c	DQ ^d	NA	0.005	0.005	<0.0017	<0.0017					
T. Chromium	mg/L	Unknown ^c	DQ ^d	NA	0.1	0.1	<0.0072	<0.0072					
Cobalt	mg/L	Unknown ^c	DQ ^d	NA	0.006	0.006	0.00054	0.00022					
Fluoride	mg/L	Normal	Parametric	0.103	4	4	0.295	0.072					
Lead	mg/L	Unknown ^c	DQ^{d}	NA	0.015	0.015	<0.0018	<0.0018					
Lithium	mg/L	Normal	Parametric	0.009909	0.04	0.04	0.01899	0.00965					
Mercury	mg/L	Unknown	Poisson	0.00029	0.002	0.002	<0.00075	<0.00075					
Molybdenum	mg/L	Unknown	Poisson	0.00765	0.1	0.1	<0.005	<0.005					
Selenium	mg/L	Unknown ^c	DQ^{d}	NA	0.5	0.5	<0.0068	<0.0068					
Thallium	mg/L	Unknown ^c	DQ ^d	NA	0.002	0.002	<0.0006	<0.0006					
Sum Ra226+Ra228	pCi/L	Unknown	Poisson	0.54	5	5	0.806	<0.56					

^aPrediction Limits calculated using 5% alpha.

^bUpper Prediction Limit used for all parameters.

^cData distribution set to Unknown if all values non-detect in upgradient well

^dDQ is Double Quantification Rule. If two successive, independent detected values occur, that would be an SSI and also an SSL if > GWPS. However, if value was detected in upgradient well during the same sampling event, would use Poisson PL instead.

= UPL > Result > MCL/RSL #.#### = SSI < GWPS = SSI > GWPS = DQ Parameter with Verification Sampling Needed

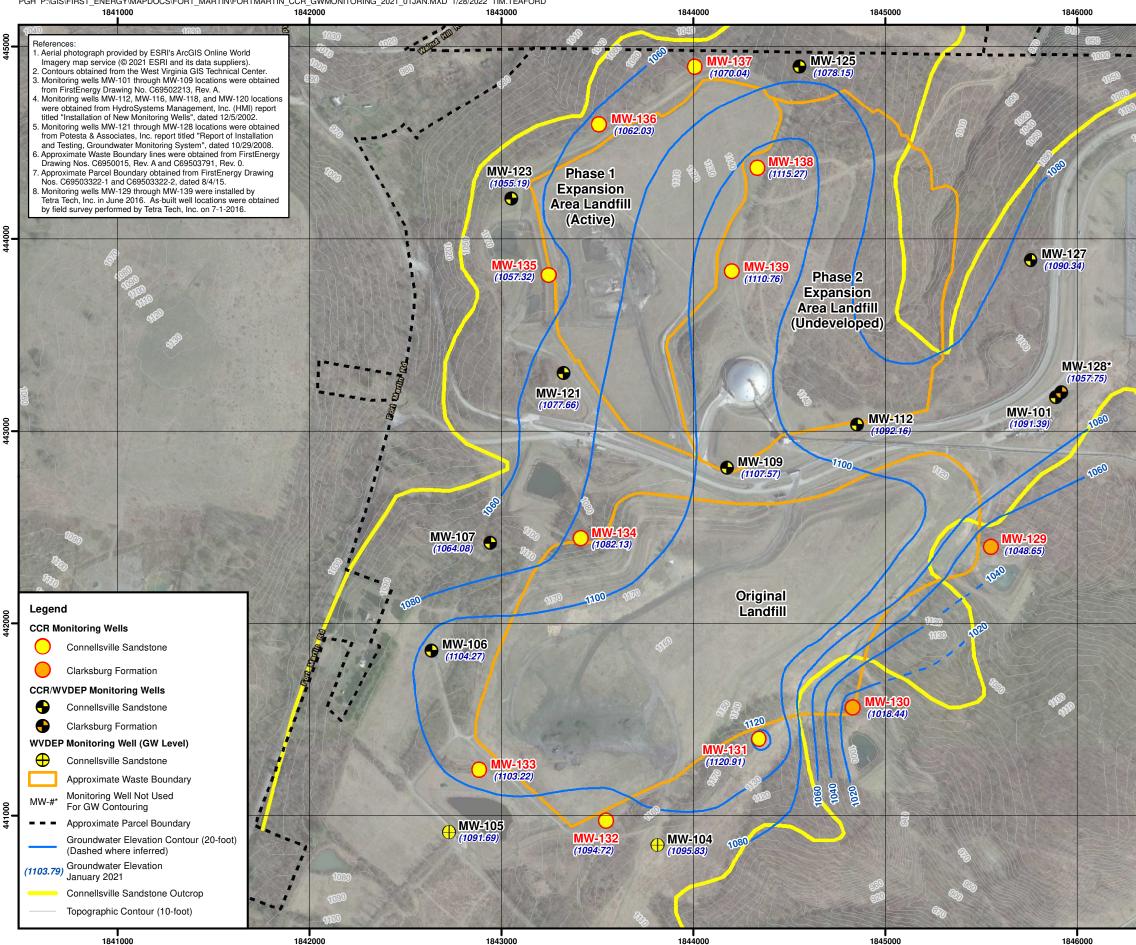
2021 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT

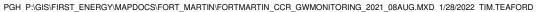
Event 1	7 (AM-7)									
Background Well										
MW-101										
<0.001	U									
0.0001	J									
0.0628										
<0.0002	U									
<0.0006	U									
0.00039	J									
0.0001	J									
0.086	J									
<0.0005	U									
0.01034										
<0.00075	U									
<0.001	U									
<0.003	U									
<0.00018	U									
NA										

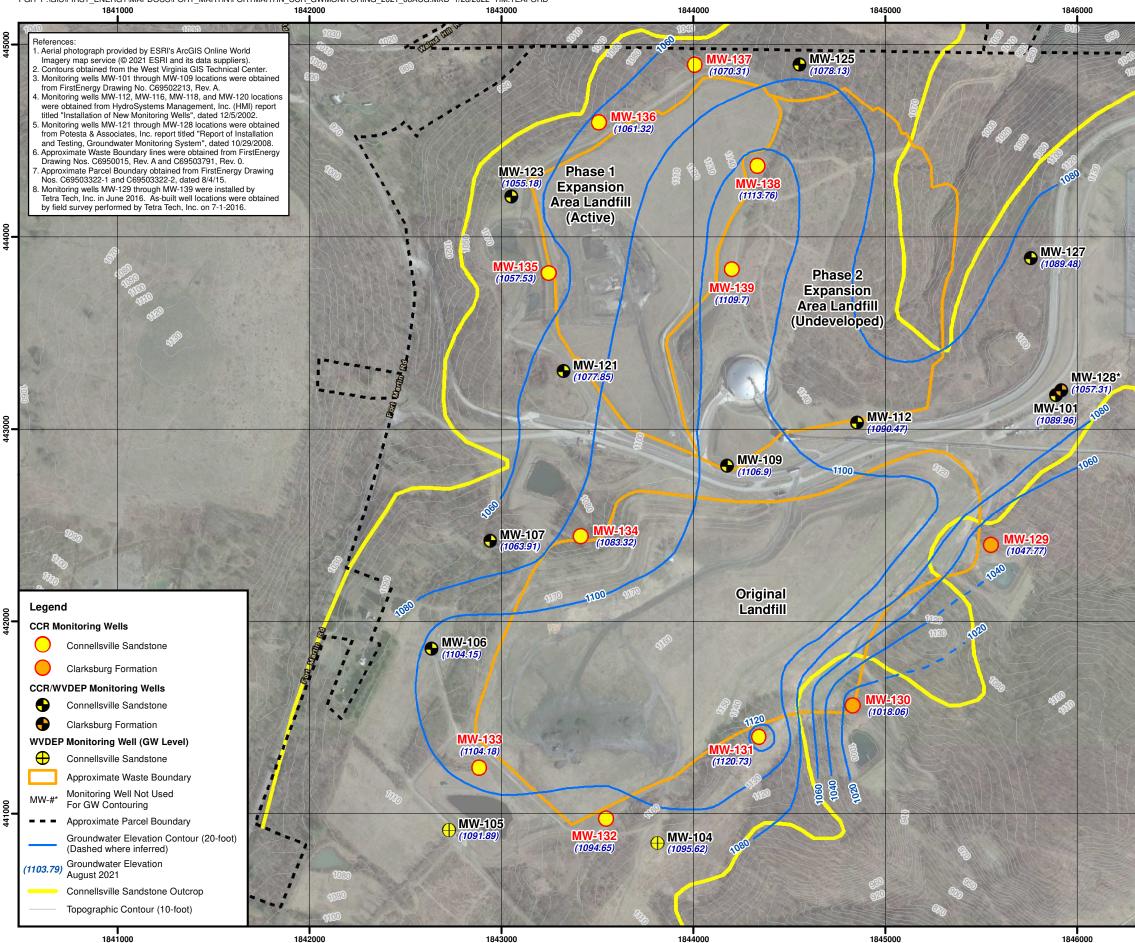
= UPL > Result > MCL/RSL

= DQ Parameter with

Verification Sampling


Event 18 (AM-8) Background Well MW-101								
<0.005	U							
< 0.0013	U							
0.06681								
<0.0004	U							
<0.0017	U							
<0.0072	U							
<0.002	U							
0.087	J							
<0.0018	U							
0.01009								
<0.00075	U							
<0.005	U							
<0.0068	U							
<0.0006	U							
<0.414	U							




FIGURES

	1847000		1848000				
	WELL NO	NORTHING	EASTING		00		
	MW-101	443179.8	1845890.		445000		
	MW-104	440850.6	1843814.4				
	10100-103	440919.7	1842727.				
	MW-106	441863.0	1842637.	1000			
	MW-107 MW-109	442422.9 442812.0	1842940. 1844177.	1000			
	MW-109	442812.0	1844854.				
	MW-121	443305.3	1843323.	A STATE OF THE OWNER OF THE			
La	MW-123	444211.6	1843051.3	and the second sec			
- 05	MW-125	444898.2	1844554.4	4			
	MW-127	443894.6	1845758.				
The second	MW-128	443204.3	1845917.				
2.4.3 · · · · ·	MW-129	442400.5	1845552.		0		
11111111111	MW-130	441564.6	1844830.	a the second of the	444000		
	MW-131 MW-132	441403.0 440977.7	1844341.	and the second se	44		
1940	MW-132	440977.7 441238.8	1843547.	No. of Concession, Name			
and the second	MW-133	441230.0	1843413.	1 miles			
	MW-135	443815.5	1843246.0	Contract Providence			
	MW-136	444597.3	1843509.	A DECEMBER OF THE OWNER OWNE OWNER O			
Sand Sara .	MW-137	444895.8	1844006.	and the second second			
	MW-138	444372.8	1844334.4	4			
	MW-139	443833.8	1844200.	7			
	Coordinates	are in NAD 1983	State Plane				
	Wes	t Virginia North (1	feet)				
	ALA TAB		3 BAN	医肾疗			
	ANCAL SALE AND		R ENEL	1.	443000		
ALL S		Press and the second			443		
			A Malale				
				47 C M			
		Jail Ale	1080				
			0301 1020	8.9			
$1 \ge 6116$	11/1			96 6 8			
				0			
	2016 1715	To		11 22/23			
		1070		alle aller			
N.A		1030	0001	100			
			950	2. 5 P			
	S. S. S. S. M. S.	124	920	11 Star /	1 442000		
	500	0		500	44		
	500	0		500 Feet			
	18 OWE						
17111		TETRA	TECH				
11211							
345							
200							
and the second	CCR RULE GROU	-		-			
12	INTERPRETED GRO			RY 2021			
10000	FORTIM	ARTIN POWER S					
					8		
2241147	FIRSTE	NERGY CORPO	RATION		441000		
	-	BURG, PENNS	-		~		
and the second							
1	DRAWN BY: T. TEAFO	OBD 01/28/2022	FIGU	RE NUMBER			
10	CHECKED BY: J. MAR	RLOW 01/28/2022		2-1			
11/1/	APPROVED BY: B. B/	AKER 01/28/2022	RI	EVISION			
X	CONTRACT NUMBER	: 212C-SW-00068		0			
+				-			

1000 1010 <t< th=""><th></th><th>1</th><th>847000</th><th></th><th>184</th><th>18000</th><th></th></t<>		1	847000		184	18000	
MW-101 443179.8 1845890.2 MV MW-105 440950.6 1843914.4 MV MV-106 440950.6 1842927.1 MV MV-107 442422.9 184290.3 1842937.5 MV-107 442422.9 184290.5 1844954.6 MV-112 443035.5 1843923.0 MV MV-123 444211.6 184392.0 184591.7 MV-124 443204.3 184591.7 MV 109 MV-124 443204.3 184591.7 MV 101 MV-131 44120.4 184391.3 184591.7 MV-132 44220.3 184591.7 MV 104 MV-131 44120.8 1844591.4 184391.3 184391.4 MV-132 44290.5 184391.5 184391.4 104391.7 MV-134 44244.4 184391.5 184391.4 107 144395.5 184492.4 108 108 108 108 108 108 108 108 108 108	1	20	WELLNO	NORTHING	FASTING	N	8
MM-104 440950.6 184381.4.1 MM-107 184227.7.1 MM-106 444883.0 184287.5 MM-107 442422.9 184280.7.5 MM-107 442422.9 1844854.6 MM-107 442422.9 1844854.6 MM-127 443305.5 1844854.6 MM-107 144282.9 1844554.6 MM-128 444200.5 184551.7.7 MM-128 444200.5 184552.6 MM-128 444200.5 184551.7.7 184381.7 184381.7 184381.7 MM-128 444200.5 184552.6 184352.6 184351.5 184354.6 MM-131 441403.0 184431.7 184381.2 184381.4 184331.6 MM-132 444397.3 184350.6 184350.6 184350.6 184550.0 MM-132 443933.3 1844200.7 Cordinates are in ND 1938 State Plan 184550.0 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190 190						SOL SOL	4450
Imv-106 441863.0 1842637.5 Imv						96	
Imminio 4424223 1842340.3 Imminio Imminio Imminio 442812.0 1844394.6 1844394.6 Imminio <							
MW-109 442812.0 1844177.5 MV MW-112 443005.3 1944884.6 MV MW-123 444200.5 1944305.13 MV MW-125 444898.2 1944355.4 MV MV MW-129 44200.5 1945552.0 MV MV MV MW-129 44200.5 1945552.0 MV MV <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>							
MW-112 443305.6 1844854.6 MV-121 MW-123 4443305.3 1843323.0 MV-125 4448304.2 1844554.4 MW-125 4448304.3 1844554.4 1845917.7 1843547.3 MV-127 443804.6 1844557.3 1844552.0 MV-130 441564.6 1844830.9 MV-131 441403.0 1844557.3 1844300.9 MV-133 441234.8 1844300.9 MV-133 441232.8 1844300.9 MV-133 441232.8 1844300.9 MV-133 441232.8 1844300.9 MV-133 441232.8 1844300.9 MV-139 443832.8 1844507.3 MV-139 184381.7 MV-126 MV-13						and the second sec	
MW-121 443305.3 1843323.0 1943554.4 MM-125 444211.6 1844558.0 1944555.20 1944555.20 MM-128 443200.5 1844558.0 1944555.20 1944555.20 1944555.20 MM-129 443200.5 1844558.1 1944555.20 1944555.20 1944555.20 MM-120 444200.5 1844584.4 1944555.20 1944555.20 1944555.20 MM-130 444160.71.7 1943547.3 1944555.20 1944555.20 1944555.20 1944555.20 1944555.20 1944555.20 1944555.20 1944555.20 1944555.20 194354.4 194354.4 194354.7 194354.7 194354.7 194354.7 194354.7 194354.7 194354.7 194354.4 1944384.1 1944384.1 1944280.5 1944559.20 1945552.20 1945552.20 1945552.20 1945552.20 1945552.20 1945552.20 1945552.20 1945552.20 1945552.20 1945552.20 1945552.20 1945552.20 1945552.20 1945552.20 1945552.20 1945552.20 1945552.20 1945552.20 194	Stand -	1 Car					
Imv-123 444211.6 1843051.3 Imv						1200	
MV:127 443894.6 1845756.0 Image: Constraint of the second sec	1		MW-123		1843051.3		
MV:128 443204.3 1845917.7 MV:130 14442400.5 18445552.0 MV:131 441030.0 1844341.7 MV:132 440977.7 1843347.3 MV:133 441238.6 1844280.9 MV:134 442444.4 1843413.2 MV:135 1443515.5 1843246.6 MV:136 444397.3 1844500.7 MV:137 444895.8 1844000.6 MV:138 444397.3 1844320.4 Cordinates are in NAD 1993 State Plane 0 60 W:139 443833.8 1844200.7 Cordinates are in NAD 1993 State Plane 0 60 W:139 443833.8 1844200.7 West Virginia North (teet) Feet Feet West Virginia North (teet) Feet Feet MV:139 MAXIS Feet MV:139 MAXIS Feet MV:130 Graduation Feet MV:130 Graduation Feet MV:130 Graduation Feet	- 0	36				1	
Imv: 129 442400.5 18445552.0 Imv						and the	
MV:130 441564.6 1844380.9 mv MV:131 441103.0 1844341.7 MV MV:132 441288.8 1842884.0 MV:133 441288.8 1842884.0 MV:134 442977.7 1843503.3 MV:135 444397.3 184300.3 MV:136 444597.3 1843208.0 MV:137 444395.8 1844200.7 Coordinates are in NAD 1983 State Plane Dest Virginia North (teet) Porticities 0 0 50 0 50 0 0 50 0 60 0 0 50 0 0 76et West Virginia North (teet) Feet Feet Feet Feet MV:138 44287.5 Feet Feet Feet 0 0 50 0 50 Feet 0 0 0 50 Feet Feet 0 0 Cordinates are in NAD 1983 State Plane Feet Feet	Part and and	The last				N.	
MN-132 440977.7 1843547.3 1842884.0 MN-133 4441288.8 1842884.0 1843509.3 MN-137 444895.5 1843246.6 18433509.3 MN-137 444895.8 1844006.8 1843309.3 MN-137 444895.8 1844006.8 1843304.4 MN-139 443833.8 1844200.7 Coordinates are in NAD 1993 State Plane Coordinates are in NAD 1993 State Plane North (teel) 0 60	State - 3	The I want					8
MN-132 440977.7 1843547.3 1842884.0 MN-133 4441288.8 1842884.0 1843509.3 MN-137 444895.5 1843246.6 18433509.3 MN-137 444895.8 1844006.8 1843309.3 MN-137 444895.8 1844006.8 1843304.4 MN-139 443833.8 1844200.7 Coordinates are in NAD 1993 State Plane Coordinates are in NAD 1993 State Plane North (teel) 0 60	111 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2					TO MA	140
Improve 134 442444.4 1843413.2 Improve 135 1843246.6 Improve 135 443815.5 1843200.7 Improve 1383 1844006.8 Improve 138 444397.2.8 1844006.8 1844000.7 Improve 1383 1844200.7 Cordinates are in NAD 1983 State Phane Improve 1383 1844200.7 Improve 1383 Improve 1384 Improve 1383		Contraction of the second				the second	4
Improved by: 1.1 ExcORD 01/28/2021 Contract Number: 212C-SW-00068	383 5 3	10	MW-133	441238.8	1842884.0	and the second	
Improved by: 1 <t< th=""><th></th><th>SE 60</th><th></th><th>442444.4</th><th>1843413.2</th><th>Str. 6</th><th></th></t<>		SE 60		442444.4	1843413.2	Str. 6	
Imperature Imperature <th></th> <th></th> <th></th> <th></th> <th></th> <th>and the second</th> <th></th>						and the second	
Impair 138 444372.8 1844334.4 Impair 184200.7 Coordinates are in NAD 1983 State Plane Weit Virginia North (feet) Impair 184200.7 Coordinates are in NAD 1983 State Plane Weit Virginia North (feet) Impair 184200.7 Impair 184200.7 Impair 184200.7 Impair 184200.7 Impair 184200.7 <	man all a	1.17				AL ST	
MY-139 443833.8 1844200.7 Coordinates are in NAD 1983 State Plane Weit Virginia North (feet) Weit Virginia North (feet) Weit Virginia North (feet) 0 0 00 0 0 0 0 0 0 0 0 0 0 0 0		Self 1				1 and	
Cordinates are in NAD 1983 State Plane opp United State Virginia North (feet) opp Image: State Plane o						Calcon-	
West Virginia North (feet) opp Image: Comparison of the strengt of the stren							
•••••••••••••••••••••••••••••••••••••						Halak	
Image: Section of the sectio							
Image: Section of the sectio			381223		SENAT	LTEK-	0
Image: Section of the sectio			17-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-				130
Image: Constraint of the second sec					NALAS		4
Image: Constraint of the second sec				1230451			
Image: Constraint of the second sec			1 CALL		210622	AVAS A MA	
Image: Constraint of the second sec			SIAAA	States	B	An hall	
Image: Constraint of the second sec					8 55		
Image: Constraint of the second sec	1-2-11-61		18/11/5			000	
Image: Solution of the second seco			2215-			, ag	
Image: Solution of the second seco			4714	112		and the second	
Image: Solution of the second seco		AX 51	144	070			
500 0 500 Feet Fort and a set of the set of			ALL L	UED	0000	12	
50 0 50 Feet Feet For manual provides the provides t					950	1 Aller	
50 0 50 Feet Feet For manual provides the provides t			CART -	1	920	900	1200
Feet Image: Contract Number: 212 Contract Number: Contract Number: Contract Number: Contract			500	0		500	44
CCR RULE GROUNDWATER MONITORING SYSTEM INTERPRETED GROUNDWATER FLOW AUGUST 2021 FORT MARTIN POWER STATION CCB LANDFILL FIRSTENERGY CORPORATION GREENSBURG, PENNSYLVANIA DRAWN BY: T. TEAFORD 01/28/2022 CHECKED BY: J. MARLOW 01/28/2022 APPROVED BY: B. BAKER 01/28/2022 CONTRACT NUMBER: 212C-SW-00068							
CCR RULE GROUNDWATER MONITORING SYSTEM INTERPRETED GROUNDWATER FLOW AUGUST 2021 FORT MARTIN POWER STATION CCB LANDFILL FIRSTENERGY CORPORATION GREENSBURG, PENNSYLVANIA DRAWN BY: T. TEAFORD 01/28/2022 CHECKED BY: J. MARLOW 01/28/2022 APPROVED BY: B. BAKER 01/28/2022 CONTRACT NUMBER: 212C-SW-00068		(11) (MILE					
CCR RULE GROUNDWATER MONITORING SYSTEM INTERPRETED GROUNDWATER FLOW AUGUST 2021 FORT MARTIN POWER STATION CCB LANDFILL FIRSTENERGY CORPORATION GREENSBURG, PENNSYLVANIA DRAWN BY: T. TEAFORD 01/28/2022 CHECKED BY: J. MARLOW 01/28/2022 APPROVED BY: B. BAKER 01/28/2022 CONTRACT NUMBER: 212C-SW-00068							
INTERPRETED GROUNDWATER FLOW AUGUST 2021 FORT MARTIN POWER STATION CCB LANDFILL FIRSTENERGY CORPORATION GREENSBURG, PENNSYLVANIA DRAWN BY: T. TEAFORD 01/28/2022 CHECKED BY: J. MARLOW 01/28/2022 APPROVED BY: B. BAKER 01/28/2022 CONTRACT NUMBER: 212C-SW-00068 0				IEIRA	IECH		
INTERPRETED GROUNDWATER FLOW AUGUST 2021 FORT MARTIN POWER STATION CCB LANDFILL FIRSTENERGY CORPORATION GREENSBURG, PENNSYLVANIA DRAWN BY: T. TEAFORD 01/28/2022 CHECKED BY: J. MARLOW 01/28/2022 APPROVED BY: B. BAKER 01/28/2022 CONTRACT NUMBER: 212C-SW-00068 0	77111						
INTERPRETED GROUNDWATER FLOW AUGUST 2021 FORT MARTIN POWER STATION CCB LANDFILL FIRSTENERGY CORPORATION GREENSBURG, PENNSYLVANIA DRAWN BY: T. TEAFORD 01/28/2022 CHECKED BY: J. MARLOW 01/28/2022 APPROVED BY: B. BAKER 01/28/2022 CONTRACT NUMBER: 212C-SW-00068 0	2-2						
INTERPRETED GROUNDWATER FLOW AUGUST 2021 FORT MARTIN POWER STATION CCB LANDFILL FIRSTENERGY CORPORATION GREENSBURG, PENNSYLVANIA DRAWN BY: T. TEAFORD 01/28/2022 CHECKED BY: J. MARLOW 01/28/2022 APPROVED BY: B. BAKER 01/28/2022 CONTRACT NUMBER: 212C-SW-00068 0	1 the second	CCBF	RUI E GROUI		JITORING SYST	FМ	
CCB LANDFILL FIRSTENERGY CORPORATION GREENSBURG, PENNSYLVANIA DRAWN BY: T. TEAFORD 01/28/2022 CHECKED BY: J. MARLOW 01/28/2022 APPROVED BY: B. BAKER 01/28/2022 CONTRACT NUMBER: 212C-SW-00068 0	and the second			-			
FIRSTENERGY CORPORATION GREENSBURG, PENNSYLVANIA FIGURE NUMBER DRAWN BY: T. TEAFORD 01/28/2022 CHECKED BY: J. MARLOW 01/28/2022 APPROVED BY: B. BAKER 01/28/2022 CONTRACT NUMBER: 212C-SW-00068 FIGURE NUMBER 2-2 REVISION 0 0	4		FORT M	ARTIN POWER	STATION		
GREENSBURG, PENNSYLVANIA				CCB LANDFILL			0
GREENSBURG, PENNSYLVANIA					DATION		1001
DRAWN BY: T. TEAFORD 01/28/2022 CHECKED BY: J. MARLOW 01/28/2022 APPROVED BY: B. BAKER 01/28/2022 CONTRACT NUMBER: 212C-SW-00068 FIGURE NUMBER 2-2 REVISION 0							4
DRAWN BY: T. TEAFORD 01/28/2022 2-2 CHECKED BY: J. MARLOW 01/28/2022 2-2 APPROVED BY: B. BAKER 01/28/2022 REVISION CONTRACT NUMBER: 212C-SW-00068 0			GNEEN				
CHECKED BY: J. MARLOW 01/28/2022 APPROVED BY: B. BAKER 01/28/2022 CONTRACT NUMBER: 212C-SW-00068 0			N DV. T TT		FIGURE N	IUMBER	
APPROVED BY: B. BAKER 01/28/2022 CONTRACT NUMBER: 212C-SW-00068	oto /	CHEC	KED BY: J. MAI	2-2	2		
CONTRACT NUMBER: 212C-SW-00068 0	11/1						
	a to play	CONT	RACT NUMBER	212C-SW-00068			
1847000 1848000	1		-		0		
		1	847000		184	8000	